There are 14 questions in this paper.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Sixth Term Examination Paper

04-S1

Compiled by: Dr Yu 郁博士

www.CasperYC.club

Lasted updated: May 8, 2025

Section A: Pure Mathematics

- 1 (i) Express $(3+2\sqrt{5})^3$ in the form $a+b\sqrt{5}$ where a and b are integers.
 - (ii) Find the positive integers c and d such that $\sqrt[3]{99-70\sqrt{2}}=c-d\sqrt{2}$.
 - (iii) Find the two real solutions of $x^6 198x^3 + 1 = 0$.
- The square bracket notation [x] means the greatest integer less than or equal to x. For example, $[\pi] = 3$, $[\sqrt{24}] = 4$ and [5] = 5.
 - (i) Sketch the graph of $y = \sqrt{[x]}$ and show that

$$\int_0^a \sqrt{[x]} dx = \sum_{r=0}^{a-1} \sqrt{r}$$

when a is a positive integer.

- (ii) Show that $\int_0^a 2^{[x]} dx = 2^a 1$ when a is a positive integer.
- (iii) Determine an expression for $\int_0^a 2^{[x]} dx$ when a is positive but not an integer.
- 3 (i) Show that x-3 is a factor of

$$x^{3} - 5x^{2} + 2x^{2}y + xy^{2} - 8xy - 3y^{2} + 6x + 6y.$$
(*)

Express (*) in the form (x-3)(x+ay+b)(x+cy+d) where a,b,c and d are integers to be determined.

(ii) Factorise $6y^3 - y^2 - 21y + 2x^2 + 12x - 4xy + x^2y - 5xy^2 + 10$ into three linear factors.

- **4** Differentiate $\sec t$ with respect to t.
 - (i) Use the substitution $x = \sec t$ to show that $\int_{\sqrt{2}}^2 \frac{1}{x^3 \sqrt{x^2 1}} dx = \frac{\sqrt{3} 2}{8} + \frac{\pi}{24}.$
 - (ii) Determine $\int \frac{1}{(x+2)\sqrt{(x+1)(x+3)}} dx.$
 - (iii) Determine $\int \frac{1}{(x+2)\sqrt{x^2+4x-5}} dx.$
- 5 The positive integers can be split into five distinct arithmetic progressions, as shown:

$$A: 1, 6, 11, 16, \dots$$

$$B: 2, 7, 12, 17, \dots$$

$$C:\ \ 3,\ 8,\ 13,\ 18,\ \dots$$

$$D: 4, 9, 14, 19, \dots$$

$$E: 5, 10, 15, 20, \dots$$

Write down an expression for the value of the general term in each of the five progressions. Hence prove that the sum of any term in B and any term in C is a term in E.

Prove also that the square of every term in B is a term in D. State and prove a similar claim about the square of every term in C.

(i) Prove that there are no positive integers \boldsymbol{x} and \boldsymbol{y} such that

$$x^2 + 5y = 243723.$$

(ii) Prove also that there are no positive integers \boldsymbol{x} and \boldsymbol{y} such that

$$x^4 + 2y^4 = 26\,081\,974$$
.

- **6** (i) The three points A, B and C have coordinates $(p_1, q_1), (p_2, q_2)$ and (p_3, q_3) , respectively. Find the point of intersection of the line joining A to the midpoint of BC, and the line joining B to the midpoint of AC.
 - (ii) Verify that this point lies on the line joining C to the midpoint of AB.
 - (iii) The point H has coordinates $(p_1+p_2+p_3\,,q_1+q_2+q_3)$. Show that if the line AH intersects the line BC at right angles, then $p_2^2+q_2^2=p_3^2+q_3^2$, and write down a similar result if the line BH intersects the line AC at right angles.
 - (iv) Deduce that if AH is perpendicular to BC and also BH is perpendicular to AC, then CH is perpendicular to AB.
- 7 (i) The function f(x) is defined for $|x| < \frac{1}{5}$ by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n,$$

where $a_0 = 2, a_1 = 7$ and $a_n = 7a_{n-1} - 10a_{n-2}$ for $n \geqslant 2$.

Simplify $f(x) - 7xf(x) + 10x^2f(x)$, and hence show that $f(x) = \frac{1}{1 - 2x} + \frac{1}{1 - 5x}$.

Hence show that $a_n = 2^n + 5^n$.

(ii) The function g(x) is defined for $|x| < \frac{1}{3}$ by

$$g(x) = \sum_{n=0}^{\infty} b_n x^n,$$

where $b_0 = 5$, $b_1 = 10$, $b_2 = 40$, $b_3 = 100$ and $b_n = pb_{n-1} + qb_{n-2}$ for $n \ge 2$. Obtain an expression for g(x) as the sum of two algebraic fractions and determine b_n in terms of n.

- 8 A sequence $t_0, t_1, t_2, ...$ is said to be *strictly increasing* if $t_{n+1} > t_n$ for all $n \ge 0$.
 - (i) The terms of the sequence x_0, x_1, x_2, \ldots satisfy

$$x_{n+1} = \frac{x_n^2 + 6}{5}$$

for $n \geqslant 0$. Prove that if $x_0 > 3$ then the sequence is strictly increasing.

(ii) The terms of the sequence y_0, y_1, y_2, \ldots satisfy

$$y_{n+1} = 5 - \frac{6}{y_n}$$

for $n \ge 0$. Prove that if $2 < y_0 < 3$ then the sequence is strictly increasing but that $y_n < 3$ for all n.

Section B: Mechanics

- **9** (i) A particle is projected over level ground with a speed u at an angle θ above the horizontal. Derive an expression for the greatest height of the particle in terms of u, θ and g.
 - (ii) A particle is projected from the floor of a horizontal tunnel of height $\frac{9}{10}d$. Point P is $\frac{1}{2}d$ metres vertically and d metres horizontally along the tunnel from the point of projection. The particle passes through point P and lands inside the tunnel without hitting the roof. Show that

$$\arctan \frac{3}{5} < \theta < \arctan 3.$$

- A particle is travelling in a straight line. It accelerates from its initial velocity u to velocity v, where v>|u|>0, travelling a distance d_1 with uniform acceleration of magnitude 3a. It then comes to rest after travelling a further distance d_2 with uniform deceleration of magnitude a. Show that
 - (i) if u > 0 then $3d_1 < d_2$;
 - (ii) if u < 0 then $d_2 < 3d_1 < 2d_2$.

Show also that the average speed of the particle (that is, the total distance travelled divided by the total time) is greater in the case u > 0 than in the case u < 0.

Note: In this question d_1 and d_2 are distances travelled by the particle which are not the same, in the second case, as displacements from the starting point.

- Two uniform ladders AB and BC of equal length are hinged smoothly at B. The weight of AB is W and the weight of BC is 4W. The ladders stand on rough horizontal ground with $\angle ABC = 60^{\circ}$. The coefficient of friction between each ladder and the ground is μ .
 - A decorator of weight 7W begins to climb the ladder AB slowly. When she has climbed up $\frac{1}{3}$ of the ladder, one of the ladders slips. Which ladder slips, and what is the value of μ ?

Section C: Probability and Statistics

In a certain factory, microchips are made by two machines. Machine A makes a proportion λ of the chips, where $0 < \lambda < 1$, and machine B makes the rest. A proportion p of the chips made by machine A are perfect, and a proportion q of those made by machine B are perfect, where 0 and <math>0 < q < 1.

The chips are sorted into two groups: group 1 contains those that are perfect and group 2 contains those that are imperfect.

(i) In a large random sample taken from group 1, it is found that $\frac{2}{5}$ were made by machine A. Show that λ can estimated as

 $\frac{2q}{3p+2q}.$

- (ii) Subsequently, it is discovered that the sorting process is faulty: there is a probability of $\frac{1}{4}$ that a perfect chip is assigned to group 2 and a probability of $\frac{1}{4}$ that an imperfect chip is assigned to group 1. Taking into account this additional information, obtain a new estimate of λ .
- 13 (i) Three real numbers are drawn independently from the continuous rectangular distribution on [0,1]. The random variable X is the maximum of the three numbers. Show that the probability that $X \leqslant 0.8$ is 0.512, and calculate the expectation of X.
 - (ii) N real numbers are drawn independently from a continuous rectangular distribution on [0,a]. The random variable X is the maximum of the N numbers. A hypothesis test with a significance level of 5% is carried out using the value, x, of X. The null hypothesis is that a=1 and the alternative hypothesis is that a<1. The form of the test is such that H_0 is rejected if x< c, for some chosen number c.

Using the approximation $2^{10}\approx 10^3$, determine the smallest integer value of N such that if $x\leqslant 0.8$ the null hypothesis will be rejected.

With this value of N, write down the probability that the null hypothesis is rejected if a=0.8, and find the probability that the null hypothesis is rejected if a=0.9.

Three pirates are sharing out the contents of a treasure chest containing n gold coins and 2 lead coins. The first pirate takes out coins one at a time until he takes out one of the lead coins. The second pirate then takes out coins one at a time until she draws the second lead coin. The third pirate takes out all the gold coins remaining in the chest.

Find:

- (i) the probability that the first pirate will have some gold coins;
- (ii) the probability that the second pirate will have some gold coins;
- (iii) the probability that all three pirates will have some gold coins.