1 Find the binomial expansion of each of the following in ascending powers of x up to and including the term in x^3 , for |x| < 1.

a
$$(1+x)^{-1}$$

b
$$(1+x)^{\frac{1}{2}}$$

$$c = 2(1+r)^{-3}$$

c
$$2(1+x)^{-3}$$
 d $(1+x)^{\frac{2}{3}}$

$$e \quad \sqrt[3]{1-x}$$

$$f = \frac{1}{(1+x)^2}$$

e
$$\sqrt[3]{1-x}$$
 f $\frac{1}{(1+x)^2}$ g $\frac{1}{4(1-x)^4}$ h $\frac{3}{\sqrt{1-x}}$

$$\mathbf{h} \quad \frac{3}{\sqrt{1-x}}$$

Expand each of the following in ascending powers of x up to and including the term in x^3 and 2 state the set of values of x for which each expansion is valid.

a
$$(1+2x)^{\frac{1}{2}}$$

b
$$(1-3x)^{-1}$$

c
$$(1-4x)^{-\frac{1}{2}}$$

d
$$(1+\frac{1}{2}x)^{-3}$$

e
$$(1-6x)^{\frac{1}{3}}$$

f
$$(1 + \frac{1}{4}x)^{-4}$$

$$\mathbf{g} (1+2x)^{\frac{3}{2}}$$

e
$$(1-6x)^{\frac{1}{3}}$$
 f $(1+\frac{1}{4}x)^{-4}$ **g** $(1+2x)^{\frac{3}{2}}$ **h** $(1-3x)^{-\frac{4}{3}}$

a Expand $(1-2x)^{\frac{1}{2}}$, $|x| < \frac{1}{2}$, in ascending powers of x up to and including the term in x^3 . 3

b By substituting a suitable value of x in your expansion, find an estimate for $\sqrt{0.98}$

c Show that $\sqrt{0.98} = \frac{7}{10}\sqrt{2}$ and hence find the value of $\sqrt{2}$ correct to 8 significant figures.

Expand each of the following in ascending powers of x up to and including the term in x^3 and 4 state the set of values of x for which each expansion is valid.

a
$$(2+x)^{-1}$$

b
$$(4+x)^{\frac{1}{2}}$$

b
$$(4+x)^{\frac{1}{2}}$$
 c $(3-x)^{-3}$ **d** $(9+3x)^{\frac{1}{2}}$

d
$$(9+3x)^{\frac{1}{2}}$$

e
$$(8-24x)^{\frac{1}{3}}$$
 f $(4-3x)^{-1}$ **g** $(4+6x)^{-\frac{1}{2}}$ **h** $(3+2x)^{-2}$

$$f (4-3x)^{-1}$$

$$\mathbf{g} (4+6x)^{-\frac{1}{2}}$$

h
$$(3+2x)^{-2}$$

a Expand $(1+2x)^{-1}$, $|x| < \frac{1}{2}$, in ascending powers of x up to and including the term in x^3 . 5

b Hence find the series expansion of $\frac{1-x}{1+2x}$, $|x| < \frac{1}{2}$, in ascending powers of x up to and including the term in x^3 .

6 Find the first four terms in the series expansion in ascending powers of x of each of the following and state the set of values of x for which each expansion is valid.

$$\mathbf{a} \quad \frac{1+3x}{1-x}$$

b
$$\frac{2x-1}{(1+4x)^2}$$
 c $\frac{3+x}{2-x}$

$$\mathbf{c} \quad \frac{3+x}{2-x}$$

$$\mathbf{d} \quad \frac{1-x}{\sqrt{1+2x}}$$

a Express $\frac{x-2}{(1-x)(1-2x)}$ in partial fractions. 7

> **b** Hence find the series expansion of $\frac{x-2}{(1-x)(1-2x)}$ in ascending powers of x up to and including the term in x^3 and state the set of values of x for which the expansion is valid.

By first expressing f(x) in partial fractions, find the series expansion of f(x) in ascending powers 8 of x up to and including the term in x^3 and state the set of values of x for which it is valid.

a
$$f(x) = \frac{4}{(1+x)(1-3x)}$$

b
$$f(x) \equiv \frac{1 - 6x}{1 + 3x - 4x^2}$$

a
$$f(x) \equiv \frac{4}{(1+x)(1-3x)}$$
 b $f(x) \equiv \frac{1-6x}{1+3x-4x^2}$ **c** $f(x) \equiv \frac{5}{2-3x-2x^2}$

d
$$f(x) \equiv \frac{7x-3}{x^2-4x+3}$$
 e $f(x) \equiv \frac{3+5x}{(1+3x)(1+x)^2}$ **f** $f(x) \equiv \frac{2x^2+4}{2x^2+x-1}$

$$e f(x) \equiv \frac{3+5x}{(1+3x)(1+x)^2}$$

$$\mathbf{f} \quad f(x) = \frac{2x^2 + 4}{2x^2 + x - 1}$$

Worksheet B

- **1** a Expand $(1-x)^{\frac{1}{2}}$, |x| < 1, in ascending powers of x up to and including the term in x^3 .
 - **b** By substituting x = 0.01 in your expansion, find the value of $\sqrt{11}$ correct to 9 significant figures.
- The series expansion of $(1 + 8x)^{\frac{1}{2}}$, in ascending powers of x up to and including the term in x^3 , is $1 + 4x + ax^2 + bx^3$, $|x| < \frac{1}{8}$.
 - **a** Find the values of the constants a and b.
 - **b** Use the expansion, with x = 0.01, to find the value of $\sqrt{3}$ to 5 decimal places.
- **a** Expand $(9 6x)^{\frac{1}{2}}$, $|x| < \frac{3}{2}$, in ascending powers of x up to and including the term in x^3 , simplifying the coefficient in each term.
 - **b** Use your expansion with a suitable value of x to find the value of $\sqrt{8.7}$ correct to 7 significant figures.
- **4** a Expand $(1 + 6x)^{\frac{1}{3}}$, $|x| < \frac{1}{6}$, in ascending powers of x up to and including the term in x^3 .
 - **b** Use your expansion, with x = 0.004, to find the cube root of 2 correct to 7 significant figures.
- 5 **a** Expand $(1 + 2x)^{-3}$ in ascending powers of x up to and including the term in x^3 and state the set of values of x for which the expansion is valid.
 - **b** Hence, or otherwise, find the series expansion in ascending powers of x up to and including the term in x^3 of $\frac{1+3x}{(1+2x)^3}$.
- 6 Find the coefficient of x^2 in the series expansion of $\frac{2+x}{\sqrt{4-2x}}$, |x| < 2.
- 7 **a** Find the values of A and B such that

$$\frac{2-11x}{1-5x+4x^2} \equiv \frac{A}{1-x} + \frac{B}{1-4x}.$$

- **b** Hence, find the series expansion of $\frac{2-11x}{1-5x+4x^2}$ in ascending powers of x up to and including the term in x^3 and state the set of values of x for which the expansion is valid.
- 8 $f(x) = \frac{4-17x}{(1+2x)(1-3x)^2}, |x| < \frac{1}{3}.$
 - a Express f(x) in partial fractions.
 - **b** Hence, or otherwise, find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 .
- The first three terms in the expansion of $(1 + ax)^b$, in ascending powers of x, for |ax| < 1, are $1 6x + 24x^2$.
 - **a** Find the values of the constants a and b.
 - **b** Find the coefficient of x^3 in the expansion.

