Integrate with respect to x

$$\mathbf{a} \quad \mathbf{e}^{x}$$

$$\mathbf{b} 4 \mathbf{e}^x$$

$$\mathbf{c} = \frac{1}{x}$$

$$\mathbf{d} = \frac{6}{x}$$

2 Integrate with respect to t

a
$$2 + 3e^t$$

b
$$t + t^{-1}$$

$$c t^2 - e^t$$

b
$$t + t^{-1}$$
 c $t^2 - e^t$ **d** $9 - 2t^{-1}$

$$\mathbf{e} \quad \frac{7}{t} + \sqrt{t}$$

$$f = \frac{1}{4}e^t - \frac{1}{4}$$

$$\mathbf{g} = \frac{1}{3t} + \frac{1}{t^2}$$

e
$$\frac{7}{t} + \sqrt{t}$$
 f $\frac{1}{4}e^t - \frac{1}{t}$ **g** $\frac{1}{3t} + \frac{1}{t^2}$ **h** $\frac{2}{5t} - \frac{3e^t}{7}$

3 Find

a
$$\int (5 - \frac{3}{x}) dx$$
 b $\int (u^{-1} + u^{-2}) du$ **c** $\int \frac{2e^t + 1}{5} dt$

b
$$\int (u^{-1} + u^{-2}) du$$

$$\mathbf{c} \int \frac{2\mathbf{e}^t + 1}{5} \, \mathrm{d}t$$

d
$$\int \frac{3y+1}{y} dy$$

$$\mathbf{e} \quad \int \left(\frac{3}{4} \mathbf{e}^t + 3\sqrt{t} \right) \, \mathrm{d}t \qquad \qquad \mathbf{f} \quad \int \left(x - \frac{1}{x} \right)^2 \, \mathrm{d}x$$

$$\mathbf{f} \quad \int (x - \frac{1}{x})^2 \, \mathrm{d}x$$

4 The curve y = f(x) passes through the point (1, -3).

Given that $f'(x) = \frac{(2x-1)^2}{x}$, find an expression for f(x).

5 Evaluate

a
$$\int_0^1 (e^x + 10) dx$$
 b $\int_2^5 (t + \frac{1}{t}) dt$ **c** $\int_1^4 \frac{5 - x^2}{x} dx$

b
$$\int_{2}^{5} (t + \frac{1}{t}) dt$$

c
$$\int_{1}^{4} \frac{5-x^2}{x} dx$$

d
$$\int_{-2}^{-1} \frac{6y+1}{3y} dy$$

$$e \int_{3}^{3} (e^{x} - x^{2}) dx$$

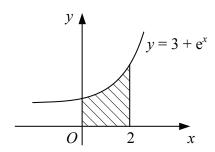
d
$$\int_{-2}^{-1} \frac{6y+1}{3y} dy$$
 e $\int_{-3}^{3} (e^x - x^2) dx$ **f** $\int_{2}^{3} \frac{4r^2 - 3r + 6}{r^2} dr$

$$\mathbf{g} = \int_{\ln 2}^{\ln 4} (7 - e^u) du$$

$$\mathbf{g} \quad \int_{\ln 2}^{\ln 4} (7 - e^{u}) \, du \qquad \qquad \mathbf{h} \quad \int_{6}^{10} r^{-\frac{1}{2}} (2r^{\frac{1}{2}} + 9r^{-\frac{1}{2}}) \, dr \qquad \mathbf{i} \quad \int_{4}^{9} \left(\frac{1}{\sqrt{x}} + 3e^{x} \right) \, dx$$

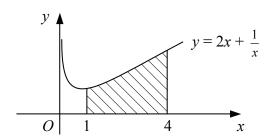
$$\mathbf{i} \quad \int_4^9 \left(\frac{1}{\sqrt{x}} + 3 \mathrm{e}^x \right) \, \mathrm{d}x$$

6



The shaded region on the diagram is bounded by the curve $y = 3 + e^x$, the coordinate axes and the line x = 2. Show that the area of the shaded region is $e^2 + 5$.

7



The shaded region on the diagram is bounded by the curve $y = 2x + \frac{1}{x}$, the x-axis and the lines x = 1 and x = 4. Find the area of the shaded region in the form $a + b \ln 2$.

8 Find the exact area of the region enclosed by the given curve, the x-axis and the given ordinates. In each case, y > 0 over the interval being considered.

$$\mathbf{a} \quad \mathbf{v} = 4\mathbf{x} + 2\mathbf{e}^{\mathbf{x}}$$

$$x = 0, \quad x = 1$$

a
$$y = 4x + 2e^x$$
, $x = 0$, $x = 1$ **b** $y = 1 + \frac{3}{x}$, $x = 2$, $x = 4$
c $y = 4 - \frac{1}{x}$, $x = -3$, $x = -1$ **d** $y = 2 - \frac{1}{2}e^x$, $x = 0$, $x = \ln 2$
e $y = e^x + \frac{5}{x}$, $x = \frac{1}{2}$, $x = 2$ **f** $y = \frac{x^3 - 2}{x}$, $x = 2$, $x = 3$

$$x=2, \qquad x=4$$

c
$$y = 4 - \frac{1}{x}$$

$$x = -3, \quad x = -$$

d
$$y = 2 - \frac{1}{2}e^x$$
,

$$x = 0, \qquad x = \ln 2$$

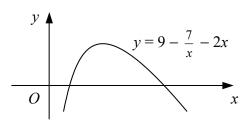
e
$$y = e^x + \frac{5}{2}$$

$$x = \frac{1}{2}, \quad x = 2$$

f
$$y = \frac{x^3 - 2}{x}$$

$$x=2, \qquad x=3$$

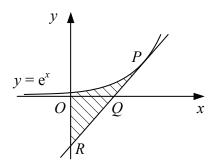
9



The diagram shows the curve with equation $y = 9 - \frac{7}{x} - 2x$, x > 0.

- a Find the coordinates of the points where the curve crosses the x-axis.
- **b** Show that the area of the region bounded by the curve and the x-axis is $11\frac{1}{4} 7 \ln \frac{7}{2}$.
- a Sketch the curve $y = e^x a$ where a is a constant and a > 1. 10 Show on your sketch the coordinates of any points of intersection with the coordinate axes and the equation of any asymptotes.
 - **b** Find, in terms of a, the area of the finite region bounded by the curve $y = e^x a$ and the coordinate axes.
 - **c** Given that the area of this region is 1 + a, show that $a = e^2$.

11



The diagram shows the curve with equation $y = e^x$. The point P on the curve has x-coordinate 3, and the tangent to the curve at P intersects the x-axis at Q and the y-axis at R.

- **a** Find an equation of the tangent to the curve at P.
- **b** Find the coordinates of the points Q and R.

The shaded region is bounded by the curve, the tangent to the curve at P and the y-axis.

c Find the exact area of the shaded region.

12

$$f(x) \equiv (\frac{3}{\sqrt{x}} - 4)^2, \ x \in \mathbb{R}, \ x > 0.$$

a Find the coordinates of the point where the curve y = f(x) meets the x-axis.

The finite region R is bounded by the curve y = f(x), the line x = 1 and the x-axis.

b Show that the area of R is approximately 0.178

1 Integrate with respect to x

a
$$(x-2)^7$$

b
$$(2x+5)^3$$

c
$$6(1+3x)^4$$

d
$$(\frac{1}{4}x-2)^5$$

$$e (8-5x)^4$$

$$\mathbf{f} = \frac{1}{(x+7)^2}$$

$$g = \frac{8}{(4x-3)^5}$$

a
$$(x-2)^7$$
 b $(2x+5)^3$ **c** $6(1+3x)^4$ **d** $(\frac{1}{4}x-2)^5$ **e** $(8-5x)^4$ **f** $\frac{1}{(x+7)^2}$ **g** $\frac{8}{(4x-3)^5}$ **h** $\frac{1}{2(5-3x)^3}$

2 Find

$$\mathbf{a} \quad \int (3+t)^{\frac{3}{2}} \, \mathrm{d}t$$

$$\mathbf{b} \quad \int \sqrt{4x-1} \, \mathrm{d}x$$

$$\mathbf{b} \quad \int \sqrt{4x-1} \, \mathrm{d}x \qquad \qquad \mathbf{c} \quad \int \frac{1}{2y+1} \, \mathrm{d}y$$

$$\mathbf{d} \quad \int e^{2x-3} \, \mathrm{d}x$$

$$e \int \frac{3}{2-7r} dr$$

e
$$\int \frac{3}{2-7r} dr$$
 f $\int \sqrt[3]{5t-2} dt$

$$\mathbf{g} \int \frac{1}{\sqrt{6-y}} dy$$

$$\mathbf{h} \quad \int 5e^{7-3t} \, dt$$

$$\mathbf{i} \int \frac{4}{3u+1} du$$

3 Given f'(x) and a point on the curve y = f(x), find an expression for f(x) in each case.

a
$$f'(x) = 8(2x - 3)^3$$
,

b
$$f'(x) = 6e^{2x+4}$$
,

$$(-2, 1)$$

c
$$f'(x) = 2 - \frac{8}{4x - 1}$$

$$(\frac{1}{2}, 4)$$

c
$$f'(x) = 2 - \frac{8}{4x - 1}$$
, $(\frac{1}{2}, 4)$ **d** $f'(x) = 8x - \frac{3}{(3x - 2)^2}$, $(-1, 3)$

4 **Evaluate**

a
$$\int_0^1 (3x+1)^2 dx$$

b
$$\int_{1}^{2} (2x-1)^{3} dx$$

a
$$\int_0^1 (3x+1)^2 dx$$
 b $\int_1^2 (2x-1)^3 dx$ **c** $\int_2^4 \frac{1}{(5-x)^2} dx$

d
$$\int_{-1}^{1} e^{2x+2} dx$$

e
$$\int_{2}^{6} \sqrt{3x-2} \ dx$$

d
$$\int_{-1}^{1} e^{2x+2} dx$$
 e $\int_{2}^{6} \sqrt{3x-2} dx$ **f** $\int_{1}^{2} \frac{4}{6x-3} dx$

$$\mathbf{g} \quad \int_0^1 \ \frac{1}{\sqrt[3]{7x+1}} \ \mathrm{d}x$$

h
$$\int_{-7}^{-1} \frac{1}{5x+3} dx$$

h
$$\int_{-7}^{-1} \frac{1}{5x+3} dx$$
 i $\int_{4}^{7} \left(\frac{x-4}{2}\right)^{3} dx$

5 Find the exact area of the region enclosed by the given curve, the x-axis and the given ordinates. In each case, y > 0 over the interval being considered.

a
$$v = e^{3-x}$$
.

$$x=3, x=3$$

b
$$y = (3x - 5)^3$$

$$x=2, \qquad x=3$$

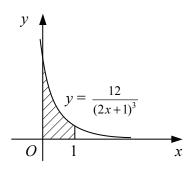
$$y = \frac{3}{4x+2}$$

$$x=1, \qquad x=3$$

a
$$y = e^{3-x}$$
, $x = 3$, $x = 4$ **b** $y = (3x-5)^3$, $x = 2$, $x = 3$
c $y = \frac{3}{4x+2}$, $x = 1$, $x = 4$ **d** $y = \frac{1}{(1-2x)^2}$, $x = -2$, $x = 0$

$$x = -2, \quad x = 0$$

6



The diagram shows part of the curve with equation $y = \frac{12}{(2x+1)^3}$.

Find the area of the shaded region bounded by the curve, the coordinate axes and the line x = 1.

Worksheet C

a Express $\frac{3x+5}{(x+1)(x+3)}$ in partial fractions.

b Hence, find
$$\int \frac{3x+5}{(x+1)(x+3)} dx$$

2 Show that
$$\int \frac{3}{(t-2)(t+1)} dt = \ln \left| \frac{t-2}{t+1} \right| + c.$$

3 Integrate with respect to x

a
$$\frac{6x-11}{(2x+1)(x-3)}$$
 b $\frac{14-x}{x^2+2x-8}$ **c** $\frac{6}{(2+x)(1-x)}$ **d** $\frac{x+1}{5x^2-14x+8}$

b
$$\frac{14-x}{x^2+2x-8}$$

c
$$\frac{6}{(2+x)(1-x)}$$

d
$$\frac{x+1}{5x^2-14x+8}$$

4 **a** Find the values of the constants A, B and C such that

$$\frac{x^2 - 6}{(x+4)(x-1)} \equiv A + \frac{B}{x+4} + \frac{C}{x-1}.$$

b Hence, find $\int \frac{x^2-6}{(x+4)(x-1)} dx$.

a Express $\frac{x^2-x-4}{(x+2)(x+1)^2}$ in partial fractions. 5

b Hence, find $\int \frac{x^2 - x - 4}{(x+2)(x+1)^2} dx$.

6 Integrate with respect to x

$$a \frac{3x^2-5}{x^2-1}$$

a
$$\frac{3x^2 - 5}{x^2 - 1}$$
 b $\frac{x(4x + 13)}{(2 + x)^2(3 - x)}$ **c** $\frac{x^2 - x + 1}{x^2 - 3x - 10}$ **d** $\frac{2 - 6x + 5x^2}{x^2(1 - 2x)}$

$$c = \frac{x^2 - x + 1}{x^2 - 3x - 10}$$

d
$$\frac{2-6x+5x^2}{x^2(1-2x)}$$

Show that $\int_3^4 \frac{3x-5}{(x-1)(x-2)} dx = 2 \ln 3 - \ln 2$. 7

8 Find the exact value of

a
$$\int_{1}^{3} \frac{x+3}{x(x+1)} dx$$

b
$$\int_0^2 \frac{3x-2}{x^2+x-12} dx$$

a
$$\int_{1}^{3} \frac{x+3}{x(x+1)} dx$$
 b $\int_{0}^{2} \frac{3x-2}{x^{2}+x-12} dx$ **c** $\int_{1}^{2} \frac{9}{2x^{2}-7x-4} dx$

d
$$\int_0^2 \frac{2x^2 - 7x + 7}{x^2 - 2x - 3} dx$$

d
$$\int_0^2 \frac{2x^2 - 7x + 7}{x^2 - 2x - 3} dx$$
 e $\int_0^1 \frac{5x + 7}{(x + 1)^2 (x + 3)} dx$ **f** $\int_{-1}^1 \frac{2 + x}{8 - 2x - x^2} dx$

$$\mathbf{f} = \int_{-1}^{1} \frac{2+x}{8-2x-x^2} \, \mathrm{d}x$$

a Express $\frac{1}{x^2 - a^2}$, where a is a positive constant, in partial fractions.

b Hence, show that $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c$.

c Find $\int \frac{1}{x^2 + y^2} dx$.

10 **Evaluate**

a
$$\int_{-1}^{1} \frac{1}{x^2 - 9} dx$$

b
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4}{1-x^2} dx$$

a
$$\int_{-1}^{1} \frac{1}{x^2 - 9} dx$$
 b $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4}{1 - x^2} dx$ **c** $\int_{0}^{1} \frac{3}{2x^2 - 8} dx$

Integrate with respect to x

a
$$2\cos x$$

b
$$\sin 4x$$

c
$$\cos \frac{1}{2}x$$

d
$$\sin\left(x+\frac{\pi}{4}\right)$$

e
$$\cos(2x-1)$$

e
$$\cos (2x - 1)$$
 f $3 \sin (\frac{\pi}{3} - x)$ **g** $\sec x \tan x$

$$\mathbf{g}$$
 sec $x \tan x$

$$\mathbf{h} \quad \csc^2 x$$

i
$$5 \sec^2 2x$$

j cosec
$$\frac{1}{4}x$$
 cot $\frac{1}{4}x$ **k** $\frac{4}{\sin^2 x}$

$$\mathbf{k} = \frac{4}{\sin^2 x}$$

$$\mathbf{l} = \frac{1}{\cos^2(4x+1)}$$

Evaluate 2

$$\mathbf{a} \quad \int_0^{\frac{\pi}{2}} \cos x \, dx$$

$$\mathbf{b} \quad \int_0^{\frac{\pi}{6}} \sin 2x \, \, \mathrm{d}x$$

b
$$\int_0^{\frac{\pi}{6}} \sin 2x \ dx$$
 c $\int_0^{\frac{\pi}{2}} 2 \sec \frac{1}{2} x \tan \frac{1}{2} x \ dx$

d
$$\int_0^{\frac{\pi}{3}} \cos(2x - \frac{\pi}{3}) dx$$

$$e \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec^2 3x \ dx$$

d
$$\int_0^{\frac{\pi}{3}} \cos(2x - \frac{\pi}{3}) dx$$
 e $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec^2 3x dx$ **f** $\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \csc x \cot x dx$

a Express $\tan^2 \theta$ in terms of $\sec \theta$. 3

b Show that
$$\int \tan^2 x \, dx = \tan x - x + c$$
.

a Use the identity for $\cos (A + B)$ to express $\cos^2 A$ in terms of $\cos 2A$. 4

b Find
$$\int \cos^2 x \, dx$$
.

5 Find

$$\mathbf{a} \int \sin^2 x \, dx$$

$$\mathbf{b} \quad \int \cot^2 2x \, \mathrm{d}x$$

$$\mathbf{b} \quad \int \cot^2 2x \, dx \qquad \qquad \mathbf{c} \quad \int \sin x \cos x \, dx$$

$$\mathbf{d} \int \frac{\sin x}{\cos^2 x} \, \mathrm{d}x$$

$$e \int 4\cos^2 3x \, dx$$

e
$$\int 4\cos^2 3x \, dx$$
 f $\int (1 + \sin x)^2 \, dx$

$$\mathbf{g} \quad \int (\sec x - \tan x)^2 \, dx \qquad \qquad \mathbf{h} \quad \int \csc 2x \cot x \, dx \qquad \qquad \mathbf{i} \quad \int \cos^4 x \, dx$$

h
$$\int \csc 2x \cot x \, dx$$

$$\int \cos^4 x \, dx$$

Evaluate 6

a
$$\int_0^{\frac{\pi}{2}} 2\cos^2 x \, dx$$

b
$$\int_0^{\frac{\pi}{4}} \cos 2x \sin 2x \ dx$$
 c $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^2 \frac{1}{2} x \ dx$

$$\mathbf{c} \quad \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^2 \frac{1}{2} x \, \mathrm{d}x$$

$$\mathbf{d} \quad \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\cos 2x}{\sin^2 2x} \, \mathrm{d}x$$

$$e^{\int_{0}^{\frac{\pi}{4}} (1-2\sin x)^2 dx}$$

e
$$\int_0^{\frac{\pi}{4}} (1 - 2\sin x)^2 dx$$
 f $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^2 x \csc^2 x dx$

a Use the identities for $\sin (A + B)$ and $\sin (A - B)$ to show that 7

$$\sin A \cos B = \frac{1}{2} [\sin (A+B) + \sin (A-B)].$$

b Find $\int \sin 3x \cos x \, dx$.

8 Integrate with respect to x

- a $2 \sin 5x \sin x$
- **b** $\cos 2x \cos x$
- **c** $4 \sin x \cos 4x$ **d** $\cos (x + \frac{\pi}{6}) \sin x$

Showing your working in full, use the given substitution to find

a
$$\int 2x(x^2-1)^3 dx$$

$$u = x^2 + 1$$

a
$$\int 2x(x^2 - 1)^3 dx$$
 $u = x^2 + 1$ **b** $\int \sin^4 x \cos x dx$ $u = \sin x$

$$u = \sin x$$

c
$$\int 3x^2(2+x^3)^2 dx$$
 $u=2+x^3$ **d** $\int 2xe^{x^2} dx$ $u=x^2$

$$u = 2 + x$$

$$\mathbf{d} \quad \int 2x \, \mathrm{e}^{x^2} \, \mathrm{d}x$$

$$u = x^2$$

e
$$\int \frac{x}{(x^2+3)^4} dx$$
 $u = x^2 + 3$ **f** $\int \sin 2x \cos^3 2x dx$ $u = \cos 2x$

$$u = x^2 + 3$$

$$\mathbf{f} \int \sin 2x \cos^3 2x \, dx$$

$$u = \cos 2x$$

g
$$\int \frac{3x}{x^2 - 2} dx$$
 $u = x^2 - 2$ **h** $\int x\sqrt{1 - x^2} dx$ $u = 1 - x^2$

$$u = x^2 - 2$$

h
$$\int x\sqrt{1-x^2}$$
 d

$$u = 1 - x^2$$

i
$$\int \sec^3 x \tan x \, dx$$

$$u = \sec x$$

i
$$\int \sec^3 x \tan x \, dx$$
 $u = \sec x$ j $\int (x+1)(x^2+2x)^3 \, dx$ $u = x^2+2x$

$$u = x^2 + 2x$$

a Given that $u = x^2 + 3$, find the value of u when 2

$$\mathbf{i} \quad x = 0$$

ii
$$x = 1$$

b Using the substitution $u = x^2 + 3$, show that

$$\int_0^1 2x(x^2+3)^2 dx = \int_3^4 u^2 du.$$

c Hence, show that

$$\int_0^1 2x(x^2+3)^2 dx = 12\frac{1}{3}.$$

3 Using the given substitution, evaluate

a
$$\int_{1}^{2} x(x^2-3)^3 dx$$

$$u = x^2 - 3$$

a
$$\int_{1}^{2} x(x^{2}-3)^{3} dx$$
 $u = x^{2}-3$ **b** $\int_{0}^{\frac{\pi}{6}} \sin^{3} x \cos x dx$ $u = \sin x$

$$u = \sin x$$

$$\mathbf{c} \quad \int_0^3 \frac{4x}{x^2 + 1} \, \mathrm{d}x$$

$$u = x^2 + 1$$

c
$$\int_0^3 \frac{4x}{x^2 + 1} dx$$
 $u = x^2 + 1$ **d** $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \sec^2 x dx$ $u = \tan x$

$$u = \tan x$$

$$\mathbf{e} \quad \int_2^3 \frac{x}{\sqrt{x^2 - 3}} \, \mathrm{d}x$$

$$u = x^2 - 3$$

$$\mathbf{e}$$
 $\int_{2}^{3} \frac{x}{\sqrt{x^{2}-3}} dx$ $u = x^{2}-3$ \mathbf{f} $\int_{-2}^{-1} x^{2}(x^{3}+2)^{2} dx$ $u = x^{3}+2$

$$u=x^3+2$$

$$\mathbf{g} = \int_0^1 e^{2x} (1 + e^{2x})^3 dx$$

$$u = 1 + e^{2x}$$

$$\mathbf{g} \quad \int_0^1 e^{2x} (1 + e^{2x})^3 dx \qquad u = 1 + e^{2x} \qquad \qquad \mathbf{h} \quad \int_3^5 (x - 2)(x^2 - 4x)^2 dx \quad u = x^2 - 4x$$

a Using the substitution $u = 4 - x^2$, show that 4

$$\int_0^2 x(4-x^2)^3 dx = \int_0^4 \frac{1}{2}u^3 du.$$

b Hence, evaluate

$$\int_0^2 x(4-x^2)^3 dx$$
.

5 Using the given substitution, evaluate

a
$$\int_0^1 x e^{2-x^2} dx$$

$$u=2-x^2$$

a
$$\int_0^1 x e^{2-x^2} dx$$
 $u = 2 - x^2$ **b** $\int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos x} dx$ $u = 1 + \cos x$

$$u = 1 + \cos x$$

6 a By writing
$$\cot x$$
 as $\frac{\cos x}{\sin x}$, use the substitution $u = \sin x$ to show that

$$\int \cot x \, dx = \ln |\sin x| + c.$$

$$\int \tan x \, dx = \ln \left| \sec x \right| + c.$$

$$\int_0^{\frac{\pi}{6}} \tan 2x \ dx.$$

7 By recognising a function and its derivative, or by using a suitable substitution, integrate with respect to x

a
$$3x^2(x^3-2)^3$$

b
$$e^{\sin x} \cos x$$

c
$$\frac{x}{x^2+1}$$

d
$$(2x+3)(x^2+3x)^2$$

$$e \quad x\sqrt{x^2+4}$$

$$\mathbf{f} \cot^3 x \csc^2 x$$

$$\mathbf{g} = \frac{e^x}{1+e^x}$$

$$\mathbf{h} \quad \frac{\cos 2x}{3 + \sin 2x}$$

$$i \frac{x^3}{(x^4-2)^2}$$

$$\mathbf{j} \quad \frac{(\ln x)^3}{x}$$

$$\mathbf{k} \quad x^{\frac{1}{2}} (1 + x^{\frac{3}{2}})^2$$

$$1 \quad \frac{x}{\sqrt{5-x^2}}$$

8 **Evaluate**

a
$$\int_0^{\frac{\pi}{2}} \sin x (1 + \cos x)^2 dx$$

b
$$\int_{-1}^{0} \frac{e^{2x}}{2 - e^{2x}} dx$$

$$\mathbf{c} \quad \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cot x \, \mathrm{cosec}^4 x \, \mathrm{d}x$$

d
$$\int_{2}^{4} \frac{x+1}{x^2+2x+8} dx$$

9 Using the substitution u = x + 1, show that

$$\int x(x+1)^3 dx = \frac{1}{20}(4x-1)(x+1)^4 + c.$$

Using the given substitution, find 10

$$\mathbf{a} \quad \int x(2x-1)^4 \, \mathrm{d}x$$

$$u = 2x - 1$$

a
$$\int x(2x-1)^4 dx$$
 $u = 2x-1$ **b** $\int x\sqrt{1-x} dx$ $u^2 = 1-x$

$$u^2 = 1 - x$$

$$\mathbf{c} \quad \int \frac{1}{(1-x^2)^{\frac{3}{2}}} \, \mathrm{d}x \qquad \qquad x = \sin u$$

$$x = \sin u$$

$$\mathbf{d} \quad \int \frac{1}{\sqrt{x} - 1} \, \mathrm{d}x \qquad \qquad x = u^2$$

$$x = u^2$$

e
$$\int (x+1)(2x+3)^3 dx$$
 $u = 2x+3$

$$u = 2x + 3$$

$$\mathbf{f} \quad \int \frac{x^2}{\sqrt{x-2}} \, \mathrm{d}x \qquad \qquad u^2 = x-2$$

$$u^2 = x - 2$$

11 Using the given substitution, evaluate

a
$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$$

$$x = \sin u$$

b
$$\int_0^2 x(2-x)^3 dx$$
 $u=2-x$

$$u=2-x$$

$$\mathbf{c} \quad \int_0^1 \sqrt{4 - x^2} \, \mathrm{d}x \qquad \qquad x = 2 \sin u$$

$$x = 2 \sin u$$

d
$$\int_0^3 \frac{x^2}{x^2 + 9} dx$$
 $x = 3 \tan u$

$$x = 3 \tan u$$

Using integration by parts, show that

$$\int x \cos x \, dx = x \sin x + \cos x + c.$$

2 Use integration by parts to find

$$\mathbf{a} \int x e^x dx$$

b
$$\int 4x \sin x \, dx$$

$$\mathbf{c} \quad \int x \cos 2x \, dx$$

$$\mathbf{d} \quad \int x\sqrt{x+1} \, \mathrm{d}x$$

$$\mathbf{e} \int \frac{x}{\mathrm{e}^{3x}} \, \mathrm{d}x$$

$$\mathbf{f} \int x \sec^2 x \, \mathrm{d}x$$

3 Using

i integration by parts,

ii the substitution u = 2x + 1,

find $\int x(2x+1)^3 dx$, and show that your answers are equivalent.

4 Show that

$$\int_0^2 x e^{-x} dx = 1 - 3e^{-2}.$$

5 **Evaluate**

$$\mathbf{a} \quad \int_0^{\frac{\pi}{6}} x \cos x \, \, \mathrm{d}x$$

$$\mathbf{b} \quad \int_0^1 x \mathrm{e}^{2x} \, \mathrm{d}x$$

$$\mathbf{c} \quad \int_0^{\frac{\pi}{4}} x \sin 3x \, dx$$

6 Using integration by parts twice in each case, show that

a
$$\int x^2 e^x dx = e^x (x^2 - 2x + 2) + c$$
,

b
$$\int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) + c.$$

7 Find

$$\mathbf{a} \quad \int x^2 \sin x \, dx \qquad \qquad \mathbf{b} \quad \int x^2 \mathrm{e}^{3x} \, dx$$

$$\mathbf{b} \quad \int x^2 \mathrm{e}^{3x} \, \mathrm{d}x$$

$$\mathbf{c} \quad \int e^{-x} \cos 2x \, dx$$

8 a Write down the derivative of $\ln x$ with respect to x.

b Use integration by parts to find

$$\int \ln x \, dx.$$

9 Find

$$\mathbf{a} \int \ln 2x \, dx$$

b
$$\int 3x \ln x \, dx$$

$$\mathbf{c} \int (\ln x)^2 dx$$

10 **Evaluate**

a
$$\int_{-1}^{0} (x+2)e^{x} dx$$

$$\mathbf{b} \quad \int_{1}^{2} x^{2} \ln x \, dx$$

$$\mathbf{c} \quad \int_{\frac{1}{3}}^{1} 2x \mathrm{e}^{3x-1} \, \mathrm{d}x$$

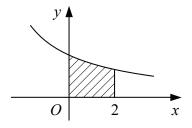
d
$$\int_0^3 \ln(2x+3) \, dx$$
 e $\int_0^{\frac{\pi}{2}} x^2 \cos x \, dx$

$$\mathbf{e} \quad \int_0^{\frac{\pi}{2}} x^2 \cos x \, \, \mathrm{d}x$$

$$\mathbf{f} \quad \int_0^{\frac{\pi}{4}} \, \mathrm{e}^{3x} \sin 2x \, \, \mathrm{d}x$$

INTEGRATION

1



The diagram shows part of the curve with parametric equations

$$x = 2t - 4$$
, $y = \frac{1}{t}$.

The shaded region is bounded by the curve, the coordinate axes and the line x = 2.

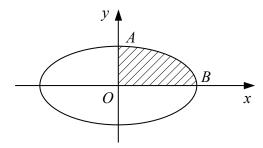
a Find the value of the parameter t when x = 0 and when x = 2.

b Show that the area of the shaded region is given by $\int_2^3 \frac{2}{t} dt$.

c Hence, find the area of the shaded region.

d Verify your answer to part **c** by first finding a cartesian equation for the curve.

2



The diagram shows the ellipse with parametric equations

$$x = 4\cos\theta$$
, $y = 2\sin\theta$, $0 \le \theta < 2\pi$,

which meets the positive coordinate axes at the points A and B.

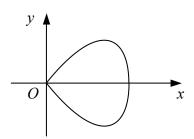
a Find the value of the parameter θ at the points A and B.

b Show that the area of the shaded region bounded by the curve and the positive coordinate axes is given by

$$\int_0^{\frac{\pi}{2}} 8\sin^2 \theta \ d\theta.$$

c Hence, show that the area of the region enclosed by the ellipse is 8π .

3



The diagram shows the curve with parametric equations

$$x = 2 \sin t$$
, $y = 5 \sin 2t$, $0 \le t < \pi$.

a Show that the area of the region enclosed by the curve is given by $\int_0^{\frac{\pi}{2}} 20 \sin 2t \cos t \, dt$.

b Evaluate this integral.

1 Using an appropriate method, integrate with respect to x

a
$$(2x-3)^4$$

b
$$\csc^2 \frac{1}{2}x$$

c
$$2e^{4x-1}$$

d
$$\frac{2(x-1)}{x(x+1)}$$

$$e \quad \frac{3}{\cos^2 2x}$$

f
$$x(x^2 + 3)$$

e
$$\frac{3}{\cos^2 2x}$$
 f $x(x^2+3)^3$ **g** $\sec^4 x \tan x$ **h** $\sqrt{7+2x}$

$$\mathbf{h} \quad \sqrt{7+2x}$$

$$i xe^{3x}$$

$$\mathbf{j} = \frac{x+2}{x^2-2x-3}$$
 $\mathbf{k} = \frac{1}{4(x+1)^3}$

$$k = \frac{1}{4(x+1)^3}$$

$$1 \tan^2 3x$$

m
$$4\cos^2(2x+1)$$
 n $\frac{3x}{1-x^2}$

$$\mathbf{n} \quad \frac{3x}{1-x^2}$$

$$\mathbf{o} \quad x \sin 2x$$

$$\mathbf{p} \quad \frac{x+4}{x+2}$$

2 **Evaluate**

$$a \int_{1}^{2} 6e^{2x-3} dx$$

$$\mathbf{b} \quad \int_0^{\frac{\pi}{3}} \tan x \, \, \mathrm{d}x$$

a
$$\int_{1}^{2} 6e^{2x-3} dx$$
 b $\int_{0}^{\frac{\pi}{3}} \tan x dx$ **c** $\int_{-2}^{2} \frac{2}{x-3} dx$

d
$$\int_{2}^{3} \frac{6+x}{4+3x-x^2} dx$$

$$e \int_{1}^{2} (1-2x)^{3} dx$$

d
$$\int_{2}^{3} \frac{6+x}{4+3x-x^{2}} dx$$
 e $\int_{1}^{2} (1-2x)^{3} dx$ **f** $\int_{0}^{\frac{\pi}{3}} \sin^{2} x \sin 2x dx$

3 Using the given substitution, evaluate

a
$$\int_0^{\frac{3}{2}} \frac{1}{\sqrt{9-x^2}} dx$$

$$x = 3 \sin u$$

b
$$\int_0^1 x(1-3x)^3 dx$$
 $u = 1-3x$

$$u = 1 - 3x$$

c
$$\int_{2}^{2\sqrt{3}} \frac{1}{4+x^2} dx$$
 $x = 2 \tan u$ **d** $\int_{-1}^{0} x^2 \sqrt{x+1} dx$ $u^2 = x+1$

$$x = 2 \tan u$$

d
$$\int_{-1}^{0} x^2 \sqrt{x+1} dx$$

$$u^2 = x + 1$$

4 Integrate with respect to x

a
$$\frac{2}{5-3x}$$

b
$$(x+1)e^{x^2+2x}$$
 c $\frac{1-x}{2x+1}$

c
$$\frac{1-x}{2x+1}$$

$$\mathbf{d} \sin 3x \cos 2x$$

e
$$3x(x-1)^4$$

e
$$3x(x-1)^4$$
 f $\frac{3x^2+6x+2}{x^2+3x+2}$ **g** $\frac{5}{\sqrt[3]{2x-1}}$ **h** $\frac{\cos x}{2+3\sin x}$

$$\mathbf{g} = \frac{5}{\sqrt[3]{2x-1}}$$

$$\mathbf{h} \quad \frac{\cos x}{2 + 3\sin x}$$

$$i \frac{x^2}{\sqrt{x^3-1}}$$

j
$$(2 - \cot x)^2$$

j
$$(2 - \cot x)^2$$
 k $\frac{6x-5}{(x-1)(2x-1)^2}$ **l** $x^2 e^{-x}$

$$1 \quad x^2 e^{-x}$$

5 **Evaluate**

$$\mathbf{a} \quad \int_2^4 \ \frac{1}{3x-4} \ \mathrm{d}x$$

$$\mathbf{b} \quad \int_{\pi}^{\frac{\pi}{4}} \operatorname{cosec}^2 x \cot^2 x \, dx$$

b
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc^2 x \cot^2 x \ dx$$
 c $\int_{0}^{1} \frac{7-x^2}{(2-x)^2(3-x)} \ dx$

$$\mathbf{d} \quad \int_0^{\frac{\pi}{2}} x \cos \frac{1}{2} x \, \, \mathrm{d}x$$

e
$$\int_{1}^{5} \frac{1}{\sqrt{4x+5}} dx$$

d
$$\int_0^{\frac{\pi}{2}} x \cos \frac{1}{2} x \, dx$$
 e $\int_1^5 \frac{1}{\sqrt{4x+5}} \, dx$ **f** $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} 2 \cos x \cos 3x \, dx$

$$\mathbf{g} = \int_0^2 x\sqrt{2x^2+1} dx$$

h
$$\int_0^1 \frac{x^2+1}{x-2} dx$$

$$\mathbf{g} = \int_0^2 x\sqrt{2x^2 + 1} \, dx$$
 $\mathbf{h} = \int_0^1 \frac{x^2 + 1}{x - 2} \, dx$ $\mathbf{i} = \int_0^1 (x - 2)(x + 1)^3 \, dx$

6 Find the exact area of the region enclosed by the given curve, the x-axis and the given ordinates.

a
$$y = \frac{x}{(x^2 + 2)^3}$$
, $x = 1$, $x = 2$ **b** $y = \ln x$, $x = 2$, $x = 4$

$$x = 1$$
,

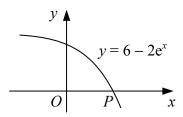
b
$$y = \ln x$$

$$x=2, \qquad x=4$$

7 Given that

$$\int_{3}^{6} \frac{ax^{2} + b}{x} dx = 18 + 5 \ln 2$$

find the values of the rational constants a and b.

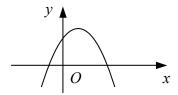


The diagram shows the curve with equation $y = 6 - 2e^x$.

- **a** Find the coordinates of the point *P* where the curve crosses the *x*-axis.
- **b** Show that the area of the region enclosed by the curve and the coordinate axes is $6 \ln 3 4$.
- 9 Using the substitution $u = \cot x$, show that

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cot^2 x \csc^4 x \ dx = \frac{2}{15} (21\sqrt{3} - 4).$$

10



The diagram shows the curve with parametric equations

$$x = t + 1$$
, $y = 4 - t^2$.

a Show that the area of the region bounded by the curve and the x-axis is given by

$$\int_{-2}^{2} (4 - t^2) dt.$$

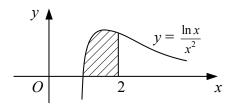
- **b** Hence, find the area of this region.
- 11 a Given that k is a constant, show that

$$\frac{d}{dx}(x^2\sin 2x + 2kx\cos 2x - k\sin 2x) = 2x^2\cos 2x + (2-4k)x\sin 2x.$$

b Using your answer to part **a** with a suitable value of k, or otherwise, find

$$\int x^2 \cos 2x \, dx.$$

12



The shaded region in the diagram is bounded by the curve with equation $y = \frac{\ln x}{x^2}$, the x-axis and the line x = 2. Use integration by parts to show that the area of the shaded region is $\frac{1}{2}(1 - \ln 2)$.

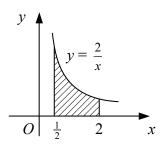
13

$$f(x) \equiv \frac{x+16}{3x^3 + 11x^2 + 8x - 4}$$

- a Factorise completely $3x^3 + 11x^2 + 8x 4$.
- **b** Express f(x) in partial fractions.
- **c** Show that $\int_{-1}^{0} f(x) dx = -(1 + 3 \ln 2).$

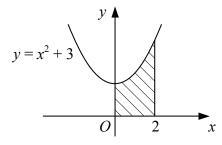
INTEGRATION

Worksheet I



The shaded region in the diagram is bounded by the curve $y = \frac{2}{x}$, the x-axis and the lines $x = \frac{1}{2}$ and x = 2. Show that when the shaded region is rotated through 360° about the x-axis, the volume of the solid formed is 6π .

2



The shaded region in the diagram, bounded by the curve $y = x^2 + 3$, the coordinate axes and the line x = 2, is rotated through 2π radians about the x-axis.

Show that the volume of the solid formed is approximately 127.

The region enclosed by the given curve, the x-axis and the given ordinates is rotated through 360° 3 about the x-axis. Find the exact volume of the solid formed in each case.

a
$$y = 2e^{\frac{x}{2}}$$

$$x=0, \qquad x=1$$

b
$$y = \frac{3}{x^2}$$
,

$$x = -2, \quad x = -1$$

c
$$y = 1 + \frac{1}{x}$$

$$x=3, \qquad x=9$$

d
$$y = \frac{3x^2 + 1}{x}$$
,

$$x = 1$$
, $x = 2$

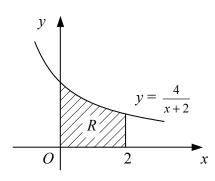
a
$$y = 2e^{\frac{x}{2}}$$
, $x = 0$, $x = 1$ **b** $y = \frac{3}{x^2}$, $x = -2$, $x = -1$
c $y = 1 + \frac{1}{x}$, $x = 3$, $x = 9$ **d** $y = \frac{3x^2 + 1}{x}$, $x = 1$, $x = 2$
e $y = \frac{1}{\sqrt{x+2}}$, $x = 2$, $x = 6$ **f** $y = e^{1-x}$, $x = -1$, $x = 1$

$$x=2, \qquad x=6$$

$$\mathbf{f} \quad v = \mathrm{e}^{1-x}$$

$$x = -1, \quad x = 1$$

4



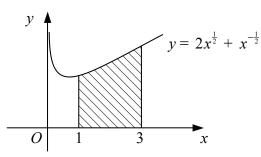
The diagram shows part of the curve with equation $y = \frac{4}{x+2}$.

The shaded region, R, is bounded by the curve, the coordinate axes and the line x = 2.

a Find the area of R, giving your answer in the form $k \ln 2$.

The region R is rotated through 2π radians about the x-axis.

b Show that the volume of the solid formed is 4π .



The diagram shows the curve with equation $y = 2x^{\frac{1}{2}} + x^{-\frac{1}{2}}$.

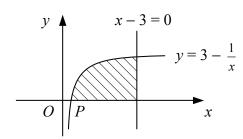
The shaded region bounded by the curve, the x-axis and the lines x = 1 and x = 3 is rotated through 2π radians about the x-axis. Find the volume of the solid generated, giving your answer in the form $\pi(a + \ln b)$ where a and b are integers.

6 a Sketch the curve $y = 3x - x^2$, showing the coordinates of any points where the curve intersects the coordinate axes.

The region bounded by the curve and the x-axis is rotated through 360° about the x-axis.

b Show that the volume of the solid generated is $\frac{81}{10}\pi$.

7



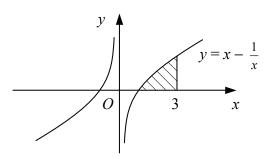
The diagram shows the curve with equation $y = 3 - \frac{1}{x}$, x > 0.

a Find the coordinates of the point *P* where the curve crosses the *x*-axis.

The shaded region is bounded by the curve, the straight line x - 3 = 0 and the x-axis.

- **b** Find the area of the shaded region.
- c Find the volume of the solid formed when the shaded region is rotated completely about the x-axis, giving your answer in the form $\pi(a+b \ln 3)$ where a and b are rational.

8



The diagram shows the curve $y = x - \frac{1}{x}$, $x \ne 0$.

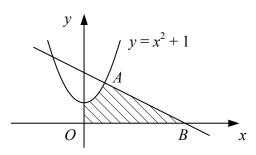
a Find the coordinates of the points where the curve crosses the *x*-axis.

The shaded region is bounded by the curve, the x-axis and the line x = 3.

b Show that the area of the shaded region is $4 - \ln 3$.

The shaded region is rotated through 360° about the *x*-axis.

c Find the volume of the solid generated as an exact multiple of π .



The diagram shows the curve $y = x^2 + 1$ which passes through the point A(1, 2).

a Find an equation of the normal to the curve at the point A.

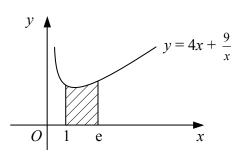
The normal to the curve at A meets the x-axis at the point B as shown.

b Find the coordinates of B.

The shaded region bounded by the curve, the coordinate axes and the line AB is rotated through 2π radians about the *x*-axis.

c Show that the volume of the solid formed is $\frac{36}{5}\pi$.

2



The shaded region in the diagram is bounded by the curve with equation $y = 4x + \frac{9}{3}$, the x-axis and the lines x = 1 and x = e.

a Find the area of the shaded region, giving your answer in terms of e.

b Find, to 3 significant figures, the volume of the solid formed when the shaded region is rotated completely about the x-axis.

3 The region enclosed by the given curve, the x-axis and the given ordinates is rotated through 2π radians about the x-axis. Find the exact volume of the solid formed in each case.

$$\mathbf{a} \quad y = \csc x, \qquad \qquad x = \frac{\pi}{6}$$

b
$$y = \sqrt{\frac{x+3}{x+2}}$$

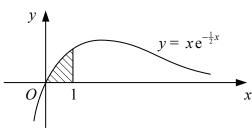
$$x=1, \qquad x=4$$

a
$$y = \csc x$$
, $x = \frac{\pi}{6}$, $x = \frac{\pi}{3}$ **b** $y = \sqrt{\frac{x+3}{x+2}}$, $x = 1$, $x = 4$
c $y = 1 + \cos 2x$, $x = 0$, $x = \frac{\pi}{4}$ **d** $y = x^{\frac{1}{2}} e^{2-x}$, $x = 1$, $x = 2$

d
$$y = x^{\frac{1}{2}} e^{2-x}$$
,

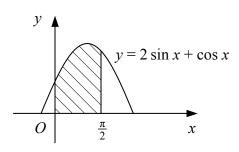
$$x=1, \qquad x=2$$

4



The shaded region in the diagram, bounded by the curve $y = xe^{-\frac{1}{2}x}$, the x-axis and the line x = 1, is rotated through 360° about the x-axis.

Show that the volume of the solid formed is $\pi(2-5e^{-1})$.

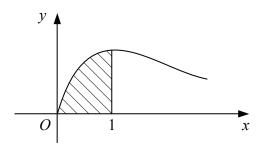


The diagram shows part of the curve with equation $y = 2 \sin x + \cos x$.

The shaded region is bounded by the curve in the interval $0 \le x < \frac{\pi}{2}$, the positive coordinate axes and the line $x = \frac{\pi}{2}$.

- **a** Find the area of the shaded region.
- **b** Show that the volume of the solid formed when the shaded region is rotated through 2π radians about the *x*-axis is $\frac{1}{4}\pi(5\pi + 8)$.

6



The diagram shows part of the curve with parametric equations

$$x = \tan \theta$$
, $y = \sin 2\theta$, $0 \le \theta < \frac{\pi}{2}$.

The shaded region is bounded by the curve, the x-axis and the line x = 1.

a Write down the value of the parameter θ at the points where x = 0 and where x = 1.

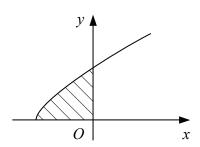
The shaded region is rotated through 2π radians about the *x*-axis.

b Show that the volume of the solid formed is given by

$$4\pi \int_0^{\frac{\pi}{4}} \sin^2 \theta \ d\theta.$$

c Evaluate this integral.

7



The diagram shows part of the curve with parametric equations

$$x = t^2 - 1$$
, $y = t(t + 1)$, $t \ge 0$.

a Find the value of the parameter t at the points where the curve meets the coordinate axes.

The shaded region bounded by the curve and the coordinate axes is rotated through 2π radians about the *x*-axis.

b Find the volume of the solid formed, giving your answer in terms of π .

Find the general solution of each differential equation.

$$\mathbf{a} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = (x+2)^3$$

$$\mathbf{b} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 4\cos 2x$$

$$\mathbf{c} \quad \frac{\mathrm{d}x}{\mathrm{d}t} = 3\mathrm{e}^{2t} + 2$$

$$\mathbf{d} \quad (2-x)\frac{\mathrm{d}y}{\mathrm{d}x} = 1$$

$$e \frac{dN}{dt} = t\sqrt{t^2 + 1}$$

$$\mathbf{f} = \frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^x$$

2 Find the particular solution of each differential equation.

$$\mathbf{a} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-x},$$

$$y = 3$$
 when $x = 0$

a
$$\frac{dy}{dx} = e^{-x}$$
, $y = 3$ when $x = 0$ **b** $\frac{dy}{dt} = \tan^3 t \sec^2 t$, $y = 1$ when $t = \frac{\pi}{3}$

c
$$(x^2 - 3) \frac{du}{dx} = 4x$$
, $u = 5$ when $x = 2$ **d** $\frac{dy}{dx} = 3\cos^2 x$, $y = \pi$ when $x = \frac{\pi}{2}$

$$u = 5$$
 when $x = 2$

$$\mathbf{d} \quad \frac{\mathrm{d}y}{1} = 3\cos^2 x$$

$$y = \pi$$
 when $x = \frac{\pi}{2}$

a Express $\frac{x-8}{x^2-x-6}$ in partial fractions. 3

b Given that

$$(x^2 - x - 6) \frac{dy}{dx} = x - 8,$$

and that $y = \ln 9$ when x = 1, show that when x = 2, the value of y is $\ln 32$.

4 Find the general solution of each differential equation.

$$\mathbf{a} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 2y + 3$$

$$\mathbf{b} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \sin^2 2y$$

$$\mathbf{c} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = xy$$

d
$$(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} = y$$

$$e \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 - 2}{y}$$

$$\mathbf{e} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 - 2}{y} \qquad \qquad \mathbf{f} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 2\cos x \cos^2 y$$

$$\mathbf{g} \quad \sqrt{x} \, \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{y-3}$$

$$\mathbf{h} \quad y \frac{\mathrm{d}y}{\mathrm{d}x} = xy^2 + 3x$$

$$\mathbf{i} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = xy\sin x$$

$$\mathbf{j} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{2x-y}$$

$$\mathbf{k} \quad (y-3)\frac{\mathrm{d}y}{\mathrm{d}x} = xy(y-1) \qquad \qquad \mathbf{l} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = y^2 \ln x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 \ln x$$

5 Find the particular solution of each differential equation.

$$\mathbf{a} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{2y},$$

$$y = 3$$
 when $x = 4$

$$y = 3$$
 when $x = 4$ **b** $\frac{dy}{dx} = (y + 1)^3$, $y = 0$ when $x = 2$

$$y = 0$$
 when $x = 2$

c
$$(\tan^2 x) \frac{dy}{dx} = y$$
, $y = 1$ when $x = \frac{\pi}{2}$ **d** $\frac{dy}{dx} = \frac{y+2}{x-1}$, $y = 6$ when $x = 3$

$$y = 1$$
 when $x = \frac{\pi}{2}$

$$\mathbf{d} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y+2}{x-1} \,,$$

$$y = 6$$
 when $x = 3$

$$e \frac{dy}{dx} = x^2 \tan y$$

$$y = \frac{\pi}{6}$$
 when $x = 0$

$$\mathbf{f} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{\frac{y}{x+3}} \,,$$

$$\mathbf{e} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \tan y, \qquad y = \frac{\pi}{6} \text{ when } x = 0 \qquad \mathbf{f} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{\frac{y}{x+3}}, \qquad y = 16 \text{ when } x = 1$$

$$\mathbf{g} = e^x \frac{dy}{dx} = x \csc y$$
, $y = \pi$ when $x = -1$ $\mathbf{h} = \frac{dy}{dx} = \frac{1 + \cos y}{2x^2 \sin y}$, $y = \frac{\pi}{3}$ when $x = 1$

$$\mathbf{h} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + \cos y}{2x^2 \sin y}$$

$$y = \frac{\pi}{3}$$
 when $x =$

C4 > INTEGRATION

- 1 **a** Express $\frac{x+4}{(1+x)(2-x)}$ in partial fractions.
 - **b** Given that y = 2 when x = 3, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y(x+4)}{(1+x)(2-x)}.$$

2 Given that y = 0 when x = 0, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x+y}\cos x.$$

- Given that $\frac{dy}{dx}$ is inversely proportional to x and that y = 4 and $\frac{dy}{dx} = \frac{5}{3}$ when x = 3, find an expression for y in terms of x.
- 4 A quantity has the value N at time t hours and is increasing at a rate proportional to N.
 - **a** Write down a differential equation relating N and t.
 - **b** By solving your differential equation, show that

$$N = Ae^{kt}$$

where A and k are constants and k is positive.

Given that when t = 0, N = 40 and that when t = 5, N = 60,

- **c** find the values of A and k,
- **d** find the value of N when t = 12.
- A cube is increasing in size and has volume $V \text{ cm}^3$ and surface area $A \text{ cm}^2$ at time t seconds.
 - a Show that

$$\frac{\mathrm{d}V}{\mathrm{d}A} = k\sqrt{A} \;,$$

where k is a positive constant.

Given that the rate at which the volume of the cube is increasing is proportional to its surface area and that when t = 10, A = 100 and $\frac{dA}{dt} = 5$,

b show that

$$A = \frac{1}{16} (t + 30)^2.$$

- At time t = 0, a piece of radioactive material has mass 24 g. Its mass after t days is m grams and is decreasing at a rate proportional to m.
 - a By forming and solving a suitable differential equation, show that

$$m = 24e^{-kt}$$

where k is a positive constant.

After 20 days, the mass of the material is found to be 22.6 g.

- **b** Find the value of k.
- **c** Find the rate at which the mass is decreasing after 20 days.
- **d** Find how long it takes for the mass of the material to be halved.

- A quantity has the value P at time t seconds and is decreasing at a rate proportional to \sqrt{P} .
 - a By forming and solving a suitable differential equation, show that

$$P = (a - bt)^2,$$

where a and b are constants.

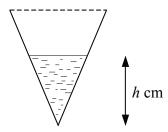
Given that when t = 0, P = 400,

b find the value of a.

Given also that when t = 30, P = 100,

c find the value of P when t = 50.

8



The diagram shows a container in the shape of a right-circular cone. A quantity of water is poured into the container but this then leaks out from a small hole at its vertex.

In a model of the situation it is assumed that the rate at which the volume of water in the container, $V \, \text{cm}^3$, decreases is proportional to V. Given that the depth of the water is $h \, \text{cm}$ at time $t \, \text{minutes}$,

a show that

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -kh,$$

where k is a positive constant.

Given also that h = 12 when t = 0 and that h = 10 when t = 20,

b show that

$$h=12e^{-kt},$$

and find the value of k,

- **c** find the value of t when h = 6.
- 9 **a** Express $\frac{1}{(1+x)(1-x)}$ in partial fractions.

In an industrial process, the mass of a chemical, m kg, produced after t hours is modelled by the differential equation

$$\frac{\mathrm{d}m}{\mathrm{d}t} = k\mathrm{e}^{-t}(1+m)(1-m),$$

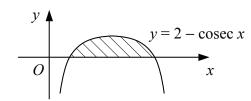
where *k* is a positive constant.

Given that when t = 0, m = 0 and that the initial rate at which the chemical is produced is 0.5 kg per hour,

- **b** find the value of k,
- **c** show that, for $0 \le m < 1$, $\ln \left(\frac{1+m}{1-m} \right) = 1 e^{-t}$.
- **d** find the time taken to produce 0.1 kg of the chemical,
- e show that however long the process is allowed to run, the maximum amount of the chemical that will be produced is about 462 g.

- Use the trapezium rule with n intervals of equal width to estimate the value of each integral. 1

- **a** $\int_{1}^{5} x \ln (x+1) dx$ n=2 **b** $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot x dx$ n=2 **c** $\int_{-2}^{2} e^{\frac{x^{2}}{10}} dx$ n=4 **d** $\int_{0}^{1} \arccos (x^{2}-1) dx$ n=4 **e** $\int_{0}^{0.5} \sec^{2} (2x-1) dx$ n=5 **f** $\int_{0}^{6} x^{3} e^{-x} dx$ n=6
- $\mathbf{e} \quad \int_0^{0.5} \sec^2 (2x 1) \, \mathrm{d}x \qquad n = 5$



The diagram shows the curve with equation $y = 2 - \csc x$, $0 < x < \pi$.

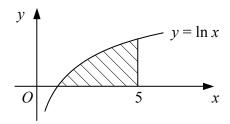
- a Find the exact x-coordinates of the points where the curve crosses the x-axis.
- **b** Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region bounded by the curve and the x-axis.

3

$$f(x) \equiv \frac{\pi}{6} + \arcsin\left(\frac{1}{2}x\right), \ x \in \mathbb{R}, -2 \le x \le 2.$$

- a Use the trapezium rule with three strips to estimate the value of the integral $I = \int_{-\infty}^{\infty} f(x) dx$.
- **b** Use the trapezium rule with six strips to find an improved estimate for *I*.

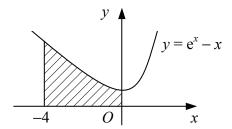
4



The shaded region in the diagram is bounded by the curve $y = \ln x$, the x-axis and the line x = 5.

- a Estimate the area of the shaded region to 3 decimal places using the trapezium rule with
 - i 2 strips
- ii 4 strips
- iii 8 strips
- **b** By considering your answers to part **a**, suggest a more accurate value for the area of the shaded region correct to 3 decimal places.
- **c** Use integration to find the true value of the area correct to 3 decimal places.

5



The shaded region in the diagram is bounded by the curve $y = e^x - x$, the coordinate axes and the line x = -4. Use the trapezium rule with five equally-spaced ordinates to estimate the volume of the solid formed when the shaded region is rotated completely about the x-axis.