1 Find the gradient of the line segment joining each pair of points.

- **a** (3, 1) and (5, 5)

- **b** (4, 7) and (10, 9) **c** (6, 1) and (2, 5) **d** (-2, 2) and (2, 8)
- e (1,3) and (7,-1)
- **f** (4, 5) and (-5, -7) **g** (-2, 0) and (0, -8) **h** (8, 6) and (-7, -2)

2 Write down the gradient and y-intercept of each line.

- **a** v = 4x 1
- **b** $y = \frac{1}{3}x + 3$
- **c** y = 6 x
- **d** $y = -2x \frac{3}{5}$

Find the gradient and *y*-intercept of each line. 3

- **a** x + y + 3 = 0

- **b** x-2y-6=0 **c** 3x+3y-2=0 **d** 4x-5y+1=0

4 Write down, in the form $y - y_1 = m(x - x_1)$, the equation of the straight line with the given gradient which passes through the given point.

- a gradient 2,
- point (4, 1)
- **b** gradient 5,
- point (2, -5)

- c gradient -3, point (-1, 1)
- **d** gradient $\frac{1}{2}$, point (1, 6)
- e gradient -2, point $(\frac{3}{4}, -\frac{1}{4})$
- **f** gradient $-\frac{1}{5}$, point (-3, -7)

5 Find, in the form y = mx + c, the equation of the straight line with the given gradient which passes through the given point.

- a gradient 3,
- point (1, 2)
- **b** gradient -1, point (5, 3)
- c gradient 4, point (-2, -3)
- - **d** gradient -2, point (-4, 1)
- point (-3, 1)e gradient $\frac{1}{3}$,
- **f** gradient $-\frac{5}{6}$, point (9, -2)

6 Find, in each case, the equation of the straight line with gradient m which passes through the point P. Give your answers in the form ax + by + c = 0, where a, b and c are integers.

- **a** m = 1, P(2, -4) **b** $m = \frac{1}{2}$, P(6, 1) **c** m = -4, P(-1, 8)

- **d** $m = \frac{2}{5}$, P(-3, 5) **e** m = -3, $P(\frac{3}{2}, -\frac{1}{8})$ **f** $m = -\frac{3}{4}$, $P(\frac{2}{3}, -7)$

7 Find, in the form y = mx + c, the equation of the straight line passing through each pair of points.

- **a** (0, 1) and (4, 13)
- **b** (2, 9) and (7, -1) **c** (-4, 3) and (2, 7)
- **d** $(-\frac{1}{2}, -2)$ and (2, 8) **e** (3, -2) and (18, -5) **f** (-3.2, 4) and (-2, 0.4)

8 Find, in the form ax + by + c = 0, where a, b and c are integers, the equation of the straight line which passes through each pair of points.

- a (3, 0) and (5, 2)
- **b** (-1, 8) and (5, -4) **c** (-5, 3) and (7, 5)
- **d** (-4, -1) and (8, -17) **e** (2, -1.5) and (7, 0) **f** $(-\frac{3}{5}, \frac{1}{10})$ and (3, 1)

9 The straight line l passes through the points A (-6, 8) and B (3, 2).

- **a** Find an equation of the line *l*.
- **b** Show that the point C(9, -2) lies on l.
- 10 The point M(k, 2k) lies on the line with equation x - 3y + 15 = 0. Find the value of the constant *k*.

- The point with coordinates $(4p, p^2)$ lies on the line with equation 2x 4y + 5 = 0. 11 Find the two possible values of the constant p.
- 12 Find the coordinates of the points at which each straight line crosses the coordinate axes.
 - **a** y = 2x + 5
- **b** x 3v + 6 = 0
- **c** 2x + 4y 3 = 0 **d** 5x 3y = 10

- 13 The line *l* has the equation 5x - 18y - 30 = 0.
 - a Find the coordinates of the points A and B where the line l crosses the coordinate axes.
 - **b** Find the area of triangle *OAB* where *O* is the origin.
- 14 Find the exact length of the line segment joining each pair of points, giving your answers in terms of surds where appropriate.
 - **a** (1, 1) and (4, 5)
- **b** (0, 0) and (3, 1)
- c (1, -4) and (9, 11)

- **d** (7, -8) and (-9, 4)
- e (3, 12) and (1, 7)
- **f** (-6, -3) and (2, -7)
- The points P(22, 15), Q(-13, c) and R(k, 24) all lie on a circle, centre (2, 0). 15 Find the radius of the circle and the possible values of the constants c and k.
- 16 The points A(-2, 7) and B(6, -3) lie at either end of the diameter of a circle. Find the area of the circle, giving your answer as an exact multiple of π .
- 17 The corners of a triangle are the points P(4, 7), Q(-2, 5) and R(3, -10).
 - a Find the length of each side of triangle *PQR*, giving your answers in terms of surds.
 - **b** Hence, verify that triangle *PQR* contains a right-angle.
 - **c** Find the area of triangle *PQR*.
- 18 Find the coordinates of the mid-point of the line segment joining each pair of points.
 - **a** (0, 2) and (8, 4)
- **b** (1, 9) and (7, 5)
- \mathbf{c} (-5, 1) and (3, -7)

- **d** (-5, -7) and (7, -5) **e** (1, 0) and (2, 9) **f** (-1, -2) and (4, -5)
- **g** (2.4, 3.1) and (0.6, 4.5) **h** (0, 3) and $(\frac{1}{2}, \frac{3}{2})$ **i** $(-\frac{5}{4}, 2)$ and $(-1, -\frac{3}{5})$
- 19 The straight line l_1 passes through the points P(-2, 1) and Q(4, -1).
 - a Find the equation of l_1 in the form ax + by + c = 0, where a, b and c are integers.

The straight line l_2 passes through the point R(2, 4) and through the mid-point of PO.

- **b** Find the equation of l_2 in the form y = mx + c.
- 20 Find the coordinates of the point of intersection of each pair of straight lines.
 - **a** v = 2x + 1y = 3x - 1

b v = x + 7y = 4 - 2x v = 5x - 4y = 3x - 1

- **d** x + 2y 4 = 03x - 2v + 4 = 0
- e 2x + y 2 = 0x + 3y + 9 = 0
- $\mathbf{f} = 3x + 2y = 0$ x + 4y - 2 = 0
- 21 The line l with equation x - 2y + 2 = 0 crosses the y-axis at the point P. The line m with equation 3x + y - 15 = 0 crosses the y-axis at the point Q and intersects l at the point R. Find the area of triangle *PQR*.

C1 COORDINATE GEOMETRY

- 1 Find the gradient of a straight line that is
 - a parallel to the line y = 3 2x,
- **b** parallel to the line 2x 5y + 1 = 0,
- c perpendicular to the line y = 3x + 4,
- **d** perpendicular to the line x + 2y 3 = 0.
- Find, in the form y = mx + c, the equation of the straight line
 - a parallel to the line y = 4x 1 which passes through the point with coordinates (1, 7),
 - **b** perpendicular to the line y = 6 x which passes through the point with coordinates (-4, 3),
 - c perpendicular to the line x 3y = 0 which passes through the point with coordinates (-2, -2).
- Find, in the form ax + by + c = 0, where a, b and c are integers, the equation of the straight line
 - a parallel to the line 2x 3y + 5 = 0 which passes through the point with coordinates (3, -1),
 - **b** perpendicular to the line 3x + 4y = 1 which passes through the point with coordinates (2, 5),
 - c parallel to the line 3x + 5y = 6 which passes through the point with coordinates (-4, -7).
- Find, in the form ax + by + c = 0, where a, b and c are integers, the equation of the perpendicular bisector of the line segment joining each pair of points.
 - a (0, 4) and (8, 0)
- **b** (2, 7) and (4, 1)
- \mathbf{c} (-3, -2) and (9, 1)
- 5 The vertices of a triangle are the points A(-6, -3), B(4, -1) and C(3, 4).
 - **a** Find the gradient of AB and the gradient of BC.
 - **b** Show that $\angle ABC = 90^{\circ}$.
- The line with equation 2x 3y + 5 = 0 is perpendicular to the line with equation 3x + ky 1 = 0. Find the value of the constant k.
- 7 The straight line *l* passes through the points A(-5, 5) and B(1, 7).
 - **a** Find an equation of the line *l*. Give your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

The point M is the mid-point of AB.

- **b** Prove that the line *OM*, where *O* is the origin, is perpendicular to line *l*.
- 8 The straight line p has the equation 3x 4y + 8 = 0.

The straight line q is parallel to p and passes through the point with coordinates (8, 5).

a Find the equation of q in the form y = mx + c.

The straight line r is perpendicular to p and passes through the point with coordinates (-4, 6).

- **b** Find the equation of r in the form ax + by + c = 0, where a, b and c are integers.
- **c** Find the coordinates of the point where lines q and r intersect.
- The straight line l_1 passes through the points with coordinates (-3, 7) and (1, -5).
 - a Find an equation of the line l_1 in the form ax + by + c = 0, where a, b and c are integers.

The line l_2 is perpendicular to l_1 and passes through the point with coordinates (4, 6).

b Find, in the form $k\sqrt{5}$, the distance from the origin of the point where l_1 and l_2 intersect.

C1

COORDINATE GEOMETRY

- 1 The straight line l has gradient -3 and passes through the point with coordinates (3, -5).
 - **a** Find an equation of the line *l*.

The straight line m passes through the points with coordinates (-1, -2) and (4, 1).

b Find the equation of m in the form ax + by + c = 0, where a, b and c are integers.

The lines l and m intersect at the point P.

- **c** Find the coordinates of P.
- Given that the straight line passing through the points A(2, -3) and B(7, k) has gradient $\frac{3}{2}$,
 - a find the value of k,
 - **b** show that the perpendicular bisector of AB has the equation 8x + 12y 45 = 0.
- 3 The vertices of a triangle are the points A(5, 4), B(-5, 8) and C(1, 11).
 - a Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
 - **b** Find the coordinates of the point M, the mid-point of AC.
 - **c** Show that *OM* is perpendicular to *AB*, where *O* is the origin.

4

The line *l* with equation 3x + y - 9 = 0 intersects the line *m* with equation 2x + 3y - 12 = 0 at the point *A* as shown in the diagram above.

a Find, as exact fractions, the coordinates of the point A.

The region R_1 is bounded by l, m and the y-axis.

The region R_2 is bounded by l, m and the x-axis.

- **b** Show that the ratio of the area of R_1 to the area of R_2 is 25 : 18
- 5 The straight line *l* has the equation 2x + 5y + 10 = 0.

The straight line *m* has the equation 6x - 5y - 30 = 0.

a Sketch the lines *l* and *m* on the same set of axes showing the coordinates of any points at which each line crosses the coordinate axes.

The points where line *m* crosses the coordinate axes are denoted by *A* and *B*.

b Show that *l* passes through the mid-point of *AB*.

- 6 The straight line l passes through the points with coordinates (-10, -4) and (5, 4).
 - **a** Find the equation of *l* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

The line l crosses the coordinate axes at the points P and Q.

- **b** Find, as an exact fraction, the area of triangle *OPQ*, where *O* is the origin.
- c Show that the length of PQ is $2\frac{5}{6}$.
- 7 The point A has coordinates (-8, 1) and the point B has coordinates (-4, -5).
 - a Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
 - **b** Show that the distance of the mid-point of *AB* from the origin is $k\sqrt{10}$ where *k* is an integer to be found.
- 8 The straight line l_1 has gradient $\frac{1}{3}$ and passes through the point with coordinates (-3, 4).
 - **a** Find the equation of l_1 in the form ax + by + c = 0, where a, b and c are integers.

The straight line l_2 has the equation 5x + py - 2 = 0 and intersects l_1 at the point with coordinates (q, 7).

b Find the values of the constants p and q.

9

The diagram shows trapezium ABCD in which sides AB and DC are parallel. The point A has coordinates (-4, 2) and the point B has coordinates (6, 6).

a Find the equation of the straight line passing through A and B, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

Given that the gradient of BC is -1,

b find an equation of the straight line passing through *B* and *C*.

Given also that the point D has coordinates (-2, 7),

- \mathbf{c} find the coordinates of the point C,
- **d** show that $\angle ACB = 90^{\circ}$.
- 10 The straight line *l* passes through the points $A(1, 2\sqrt{3})$ and $B(\sqrt{3}, 6)$.
 - **a** Find the gradient of *l* in its simplest form.
 - **b** Show that *l* also passes through the origin.
 - c Show that the straight line which passes through A and is perpendicular to l has equation

$$x + 2\sqrt{3} y - 13 = 0.$$

