Solomon Practice Paper

Pure Mathematics 6H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	8	
3	8	
4	12	
5	13	
6	14	
7	15	
Total:	75	

How I can achieve better:

•

•

•

[5]

1. Given that	1.	n that	Given
---------------	----	--------	-------

$$t_{n+1} = t_n - 4$$
 $n \ge 1$, $t_1 = 3$,

prove by induction that $t_n = 7$	$7-4n$ for all integers $n, n \ge 1$	1.
-----------------------------------	--------------------------------------	----

2. (a) On the same Argand diagram sketch the locus of the points defined by the equations

[6]

i.
$$z + z^* = 2$$
,

ii.
$$\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{4}$$
, where $\operatorname{Im}(z) \geq 0$.

The region R of the complex z-plane is defined by the inequalities

$$z + z^* \le 2$$
, $\arg\left(\frac{z-2}{z+2}\right) \ge \frac{\pi}{4}$ $\operatorname{Im}(z) \ge 0$.

(b)	Shade	the	${\rm region}$	R on	the	Argand	$\operatorname{diagram}$
-----	-------	-----	----------------	------	-----	--------	--------------------------

[2]

Total: 8

- 3. The points A, B and C with coordinates $(x_{-1}, y_{-1}), (x_0, y_0)$ and (x_1, y_1) respectively lie on the curve y = f(x) where $x_1 x_0 = x_0 x_{-1} = h$ and $y_n = f(x_n)$.
 - (a) By drawing a sketch, or otherwise, show that

[3]

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$

Given that

$$f'(x) = \sqrt{2x + f(x)}, \quad f(0) = 1, \quad f(0.2) = 1.25,$$

(b) use two applications of the approximation in (a) with a step length of 0.2 to find an estimate [5] for f(0.6).

Total: 8

4. The points A, B and C have position vectors a, b and c respectively such that

$$\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k},$$

$$\mathbf{b} = \mathbf{i} + q\mathbf{j} - 3\mathbf{k},$$

$$\mathbf{c} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k},$$

where q is a constant and $q \neq 2$.

(a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$, giving your answer in terms of q.

[5]

(b) Hence show that the vector $\mathbf{n} = 4\mathbf{i} - \mathbf{k}$ is perpendicular to the plane Π containing A, B and C for all real values of q.

[2]

(c) Find an equation of the plane Π , giving your answer in the form $\mathbf{r}.\mathbf{n} = p$.

[2]

[3]

Given that q = -1,

(d) find the volume of the tetrahedron *OABC*.

Total: 12

		000

5	(0)	Hao	D_{α}	Moivre's	thoonom	+-	ahorr	+ha
Э.	(a)	Use	Dе	Moivre s	tneorem	to	Snow	una

[6]

$$\cos(5\theta) \equiv \cos(\theta) \left(16\cos^4(\theta) - 20\cos^2(\theta) + 5 \right).$$

(b) By solving the equation $\cos^5(\theta) = 0$, deduce that

[7]

$$\cos^2\left(\frac{3\pi}{10}\right) = \frac{5-\sqrt{5}}{8}.$$

Total: 13

[3]

- 6. (a) Find the first three derivatives of $\ln\left(\frac{1+x}{1-2x}\right)$. [6]
 - (b) Hence, or otherwise, find the expansion of $\ln\left(\frac{1+x}{1-2x}\right)$ in ascending powers of x up to and including the term in x^3 .
 - (c) State the values of x for which this expansion is valid. [1]
 - (d) Use this expansion to find an approximate value for $\ln\left(\frac{4}{3}\right)$, giving your answer to 3 decimal places.

Total: 14

7.

$$\mathbf{A} = \begin{pmatrix} 2 & a & 2 \\ -1 & b & -2 \\ 0 & 0 & c \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 6 & 5 & 2 \\ -1 & 0 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$

and

$$(\mathbf{B} - 2\mathbf{I})\mathbf{A} = 3\mathbf{I} \tag{*}$$

where a, b and c are constants and I is the 3×3 identity matrix.

(a) Find the values of a, b and c.

[6]

(b) Using equation \star , or otherwise, find \mathbf{A}^{-1} , showing your working clearly.

[2]

The transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix **A**.

(c) Find an equation satisfied by all the points which remain invariant under T.

[4]

T maps the vector $\begin{pmatrix} p \\ q \\ r \end{pmatrix}$ onto the vector $\begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$

(d) Find the values of p, q and r.

Total: 15

[3]

