Solomon Practice Paper

Pure Mathematics 6D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	9	
3	10	
4	11	
5	11	
6	13	
7	14	
Total:	75	

How I can achieve better:

•

•

•

[7]

1.	Given	that

$$y = \frac{1}{1 - x},$$

prove by induction that

$$\frac{\mathrm{d}^n y}{\mathrm{d}x^n} = \frac{n!}{(1-x)^{n+1}}$$

for all integers $n, n \geq 1$.

5	\approx

[3]

2. The variable y satisfies the differential equation

$$\frac{dy}{dx} = x^2 + y + 2$$
, $y = 0$ at $x = 0$.

- (a) Given that $y \approx 2h$ when x = h, use the approximation $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 y_{-1}}{2h}$ once to obtain an estimate for y as a function of h when x = 2h.
- (b) Use the same approximation to show that an estimate for y when x = 3h is given by

$$y \approx 2h(2h^3 + 8h^2 + 4h + 3).$$

(c) Hence find an estimate for y when $x = 0.3$.	[2]
	Total: 9

3. Given that

$$z^6 - z^3 \sqrt{3} + 1 = 0,$$

- (a) find the possible values of z^3 , giving your answers in the form $x + \mathbf{i}y$ where $x, y \in \mathbb{R}$. [3]
- (b) Hence find all possible values of z in the form $re^{i\theta}$, where r > 0 and $-\pi \le \theta < \pi$.

Total: 10

[7]

- 4. (a) Write down the first three terms of the series of e^{x^2} , in ascending powers of x. [2]
 - (b) Hence, or otherwise, find the series expansion, in ascending powers of x up to and including the term in x^4 , of $\frac{e^{x^2}}{1+2x}$.
 - (c) Hence find an estimate for the area of the region bounded by the x-axis, the lines x=0 and x=0.2, and the curve

$$y = \frac{\mathrm{e}^{x^2}}{1 + 2x},$$

giving your answer to 3 significant figures.

		Total:

Last updated: July 14, 2025

5. The transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix **A** where

$$\mathbf{A} = \begin{pmatrix} 2 & a & 1 \\ 1 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}.$$

(a) Find A^{-1} , showing your working clearly and stating the condition for which A is non-singular.

Relative to a fixed origin O, the transformation T maps the point P onto the point Q.

When a = -1, Q has position vector $5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

(b) Find the position vector of P, showing your working clearly.

[4]

[7]

Total: 11

[4]

[4]

[5]

13

6.	The planes Π_1 and Π_2 are defined by the equations $2x - y + 3z = 5$ and $x + 4y + z = -2$ respectively.	2			
	(a) Find, to the nearest degree, the acute angle between Π_1 and Π_2 .				
	The point A has coordinates $(2, 1, -2)$.				
	(b) Find the perpendicular distance between A and Π_1 .				
	The plane Π_3 is perpendicular to Π_1 and Π_2 and the point with coordinates $(0, 4, -1)$ lies on Π_3 .				
	(c) Find the equation of Π_3 in the form $ax + by + cz = d$.				
		Total:			

7. The transformation T from the complex z-plane to the complex w-plane is given by

$$w = \frac{1}{z^* - 2}, \quad z \neq 2.$$

(a) Show that the image in the w-plane of the line Re(z) = 5 in the z-plane, under T, is a circle. Find its centre and radius.

[7]

Total: 14

[3]

The region represented by Re(z) > 5 in the z-plane is transformed under T into the region represented by R in the w-plane.

- (b) Show the region R on an Argand diagram.
- (c) Find the image in the w-plane under T of the half-line $\arg(z-2) = \frac{\pi}{4}$ in the the z-plane. [4]

