Solomon Practice Paper

Pure Mathematics 6B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	5	
4	6	
5	11	
6	12	
7	14	
8	17	
Total:	75	

How I can achieve better:

•

•

•

[5]

1. Given that x is so small that terms in x^3 and higher powers of x may be neglected, find the values of the constants a and b for which

$$\frac{\ln(1+ax)}{1+bx} = 3x + \frac{3}{2}x^2.$$

\sim	α .	. 1
'	Given	that

$$|z+1-4\mathbf{i}|=1,$$

(a) sketch, in an Argand diagram, the locus of z,

(b) find the maximum value of $\arg(z)$ in degrees to one decimal place.

[2]

[3]

Total: 5

3.	(a) Show that	[2]
٥.	(a) bliow that	[~]

 $\cosh(\mathbf{i}x) = \cos(x) \text{ where } x \in \mathbb{R}.$

$$\cosh(\mathbf{i}x) = e^{\mathbf{i}x}$$

for $0 \le x < 2\pi$.

Tota	l:	5

[6]

		_
4	(1:	+10-0+
4	(iven	that

$u_{n+2} = \xi$	$5u_{n+1} -$	$6u_n$	$n \ge 1$,	$u_1 = 2$	and	$u_2 = 4$
-----------------	--------------	--------	-------------	-----------	-----	-----------

prove by induction that $u_n = 2^n$ for all integers $n, n \ge 1$.

5.

$$\mathbf{M} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -4 \\ x & 3 & -1 \end{pmatrix}.$$

(a) Given that $\lambda = -1$ is an eigenvalue of **M**, find the value of x.

[3]

(b) Show that $\lambda = -1$ is the only real eigenvalue of \mathbf{M} .

[6]

[2]

(c) Find an eigenvector corresponding to the eigenvalue $\lambda = -1$.

Total:	11

6. A student is looking at different methods of solving the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy, \qquad y = 1 \quad \text{when} \quad x = 0.2.$$

The first method the student tries is to use the approximation

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_0}{h}$$

twice with a step length of 0.1 to obtain an estimate for y at x = 0.4.

(a) Find the value of the student's estimate for y at x = 0.4.

[6]

The student then realises that the exact value of y at x = 0.4 can be found using integration.

(b) Use integration to find the exact value of y at x = 0.4.

[4] [2]

(c) Find, correct to 1 decimal place, the percentage error in the estimated value in part (a).

Last updated: July 14, 2025

Total: 12

100
(0)

7. (a) Given that $z = \cos(\theta) + \mathbf{i}\sin(\theta)$, show that

$$z^n + \frac{1}{z^n} = 2\cos(n\theta)$$
 and $z^n - \frac{1}{z^n} = 2\mathbf{i}\sin(n\theta)$,

where n is a positive integer.

(b) Given that

$$\cos^4(\theta) + \sin^4(\theta) = A\cos(4\theta) + B,$$

find the values of the constants A and B.

[3]

$$\int_0^{\frac{\pi}{8}} \cos^4(\theta) + \sin^4(\theta) \, \mathrm{d}\theta.$$

Ί	.ota	ıl:	14

- 8. The points A, B, C and D have coordinates (3, -1, 2), (-2, 0, -1), (1, 2, 6) and (-1, -5, 8) respectively, relative to the origin O.
 - (a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

[5]

(b) Find the volume of the tetrahedron ABCD.

[3]

The plane Π contains the points A, B and C.

(c) Find a vector equation of Π in the form $\mathbf{r}.\mathbf{n} = p$.

[3]

The perpendicular from D to Π meets the plane at the point E.

[6] Total: 17

	6	0
5	C	2

(d) Find the coordinates of E.

www.CasperYC.club