Solomon Practice Paper

Pure Mathematics 6A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	7	
4	9	
5	11	
6	11	
7	11	
8	14	
Total:	75	

How I can achieve better:

•

•

•

1. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1$$
: $[\mathbf{r} - (-3\mathbf{i} + 2\mathbf{j} - \mathbf{k})] \times (\mathbf{i} + \mathbf{k}) = 0,$
 l_2 : $[\mathbf{r} - (\mathbf{i} + \mathbf{j} + 4\mathbf{k})] \times (2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 0.$

(a) Find $(\mathbf{i} + \mathbf{k}) \times (2\mathbf{i} - \mathbf{j} - 2\mathbf{k})$.

[3]

(b) Find the shortest distance between l_1 and l_2 .

[3]

LO	ta.	l:	b

[6]

2	Prove	bv	induction	that	for	all	$n \in$	π +
∠.	TIOVE	Dy	mauchon	unau,	101	an	$n \subset$	<i>∠</i> ⊿′,

$$\sum_{r=1}^{n} (r^2 + 1) r! = n(n+1)!$$

3. ((a)	Solve	the	equation
<i>o.</i> ((α)	DOLVE	UIIC	cquation

[5]

$$z_3 + 27 = 0$$
,

giving your answers in the form $r\mathrm{e}^{i\theta}$ where $r>0, -\pi<\theta\leq\pi$.

(b) Show the points representing your solutions on an Argand diagram.

[-]

10	tai	:

4.

$$A = \begin{pmatrix} 2 & a \\ 2 & b \end{pmatrix}.$$

The matrix A has eigenvalues $\lambda_1 = -2$ and $\lambda_2 = 3$.

(a) Find the value of a and the value of b.

[4]

Using your values of a and b,

(b) for each eigenvalue, find a corresponding eigenvector,

[3] [2]

(c) find a matrix **P** such that

$$\mathbf{P}^T \mathbf{A} \mathbf{P} = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}.$$

Total: 9

		/00\ ~
		50
w.CasperYC.club	Last updated: July 14, 2025	

[11]

5. 42., d.,

$$(1+x^2)\frac{d^2y}{dx^2} + 4x + \frac{dy}{dx} + 2y = 0$$

and

$$y = 1, \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 1$$

at x = -1.

Find a	series	solution	of	the	${\it differential}$	equation	${\rm in}$	ascending	powers	of	$(x \dashv$	- 1)	up	to	and
includi	ng the	term in (x +	$(-1)^4$											

Last updated: July 14, 2025

200

[11]

6. The variable y satisfies the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = x \frac{\mathrm{d}y}{\mathrm{d}x} + y^2$$

with y = 1.2 at x = 0.1 and y = 0.9 at x = 0.2.

Use the approximations

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_{-1}}{2h}$$
 and $\left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2}$

with a step length of 0.1 to estimate the values of y at x = 0.3 and x = 0.4 giving your answers to 3 significant figures.

7.

$$\mathbf{M} = \begin{pmatrix} 2 & 1 & 1 \\ k & 4 & 3 \\ -1 & k & 2 \end{pmatrix}.$$

(a) Find the determinant of M in terms of k.

[0]

(b) Prove that ${\bf M}$ is non-singular for all real values of k.

[2]

[2]

(c) Given that k = 3, find \mathbf{M}^{-1} , showing each step of your working.

[4]

When k = 3 the image of the vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ when transformed by \mathbf{M} is the vector $\begin{pmatrix} 0 \\ 3 \\ 5 \end{pmatrix}$.

(d) Find the values of a, b and c.

[3] Total: 11

8. A transformation T from the z-plane to the w-plane is defined by

$$w = \frac{z+1}{\mathbf{i}z-1}, \quad z \neq -\mathbf{i},$$

where $z = x + \mathbf{i}y, w = u + \mathbf{i}v$ and x, y, u and v are real.

T transforms the circle |z|=1 in the z-plane onto a straight line L in the w-plane.

(a) Find an equation of L giving your answer in terms of u and v.

[5]

[6]

(b) Show that T transforms the line Im(z) = 0 in the z-plane onto a circle C in the w-plane, giving the centre and radius of this circle.

[3]

(c) On a single Argand diagram sketch L and C.

Total: 14

/oo\
60