Solomon Practice Paper

Pure Mathematics 5H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

	_	
Question	Points	Score
1	8	
2	8	
3	8	
4	9	
5	11	
6	13	
7	18	
Total:	75	

How I can achieve better:

•

•

•

[8]

1	Α	curve	has	the	equation
Ι.	$\boldsymbol{\sqcap}$	curve	mas	une	equation

$$2x^2 + y^2 = 4$$
.

$2x^2 + y^2 = 4.$					
Find the radius of curvature of the curve at the point $(1, -\sqrt{2})$.					

2. (a) Using the definition of $\cosh(x)$ in terms of exponential functions show that $\cosh(x)$ is an even function.

[2]

(b) Given that x > 0 and y > 0, solve the simultaneous equations

[6]

$$\ln(x) = \operatorname{arcosh}\left(\frac{5}{3}\right)$$
$$\cosh(3x - y) = 1.$$

Total: 8

[8]

0	T. 1
. 1	Find
ο.	I III G

ſ	1	dx
J	$\frac{13\cosh(x) - 5\sinh(x)}{13\cosh(x)}$	$\mathbf{u}x$

Last updated: July 14, 2025

4.	(a)	Given	that	y =	arcsin	(2x -	1)	, 1	orove	that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x - x^2}.$$

The tangent to the curve $y = \arcsin(2x - 1)$ at the point where $x = \frac{3}{4}$ meets the y-axis at A.

(b)	Find tl	he exact	value	of the	y-coordinate	of	A
-----	---------	----------	-------	--------	--------------	----	---

Total:	9
--------	---

Last updated: July 14, 2025

- 5. The point $P(at^2, 2at), t \neq 0$, lies on the parabola C with equation $y^2 = 4ax$.
 - (a) Show that an equation of the tangent to C at P is

[4]

$$yt = x + at^2.$$

The tangent to C at P meets the x-axis at Q and the y-axis at R. M is the mid-point of QR.

(b) Find the coordinates of M.

[3]

Given that OM is perpendicular to OP, where O is the origin,

(c) show that $t^2 = 2$.

[4] Total: 11

6.

$$I_n = \int \frac{\cos(n\theta)}{\sin(\theta)} d\theta, \quad n \in \mathbb{N}.$$

(a) By considering $I_n - I_{n-2}$, or otherwise, show that

[5]

$$I_n = \frac{2\cos(n-1)\theta}{n-1} + I_{n-2}$$

(b) Hence evaluate

[8]

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(5\theta)}{\sin(\theta)} \, \mathrm{d}\theta$$

leaving your answer in terms of natural logarithms.

Total: 13

		50

Last updated: July 14, 2025

7. The ellipse C has equation

$$\frac{x^2}{a} + \frac{y^2}{b} = 1,$$

where a and b are positive constants and a > b.

The coordinates of the foci of C are $(\pm\sqrt{3},0)$, and the equations of its directrices are $x=\pm\frac{4}{\sqrt{3}}$.

(a) Find the value of a and the value of b.

[4]

The ellipse is rotated completely about the x-axis.

(b) Show that the area of the surface of revolution generated is given by

[6]

$$A = \frac{\pi}{2} \int_{-2}^{2} \sqrt{16 - 3x^2} \, \mathrm{d}x.$$

(c) Use integration to show that

[8]

$$A = \frac{8}{9}\pi^2\sqrt{3} + 2\pi.$$

Total: 18

رم	00\ 8