Solomon Practice Paper

Pure Mathematics 5G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	8	
4	9	
5	12	
6	14	
7	18	
Total:	75	

How I can achieve better:

•

•

•

- 1. Given that $y = e^{\arctan(x)}$,
 - (a) find $\frac{\mathrm{d}y}{\mathrm{d}x}$ and $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

[4]

The curve $y = e^{\arctan(x)}$ has a point of inflexion.

(b) Find the coordinates of this point of inflexion.

[3]

Total: 7

2.	(a) Prove that				[3]
	•	d	- / >	1	

 $\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{arcosh}(x) = \frac{1}{\sqrt{x^2 - 1}}.$ (b) Find $\int \operatorname{arcosh}(x) \, \mathrm{d}x.$ [4]

Total: 7

3. I	Find					
		$\int^{\frac{\pi}{4}}$	 1	$\mathrm{d}x.$		

[8]

[3]

Total: 9

4. (a) Find		[6]
	$\int \frac{1}{\sqrt{4x^2 - 4x + 10}} \mathrm{d}x.$	

(b) Hence evaluate
$$\int_{\frac{1}{2}}^2 \frac{1}{\sqrt{4x^2-4x+10}} \, \mathrm{d}x.$$

giving your answer in terms of natural logarithms.

Э.	(a)	On the same axes sketch the curves with equations $y = z - \tanh(x)$ and $y = s \operatorname{sech}(x)$,	[0]
		giving the coordinates of the points of intersection of the curves with the coordinate axes	
		and the equations of the asymptotes.	
	(b)	Solve the equation	[7
		$2 - \tanh(x) = 3\operatorname{sech}(x),$	

giving your answers to 2 decimal places.				
	Total: 1			

[7]

6.

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) \, \mathrm{d}x, \quad n \ge 0.$$

(a) Show that

$$I_n = \frac{n-1}{n} I_{n-2}, \quad n \ge 2.$$

The curve C is defined by $y = \sin^2(x), 0 \le x \le \pi$.

The area bounded by C and the positive x-axis is rotated through 2π radians about the x-axis.

[7]
d: 14

Last updated: July 14, 2025

7. Figure shows the curve C which is part of the hyperbola with parametric equations

$$x = a \cosh(t)$$
, and $y = 2a \sinh(t)$,

where a is a positive constant and $x \ge a$.

The lines l_1 and l_2 are asymptotes to C.

- (a) Show that the radius of curvature of C at its vertex is 4a.
- (b) Show that an equation of the tangent to C at the point $P(\cosh(p), 2a \sinh(p))$ is [4]
 - $2x\cosh(p) y\sinh(p) = 2a.$

Given that QS is parallel to the y-axis, where S is the focus,

The tangent to the curve C at P meets the asymptote l_1 at Q.

(c) show that $p = \frac{1}{2} \ln(5)$.

[8]

[6]

Total: 18