Solomon Practice Paper

Pure Mathematics 5E

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	6	
3	9	
4	9	
5	11	
6	11	
7	11	
8	14	
Total:	75	

How I can achieve better:

•

•

•

[4]

lear working, she	ow how the stude	ent could find	x and state the	ne value he shou	d obtain.

[3]

Total: 6

2.

$$f(x) = \sin(2x) - x \cosh^2(x).$$

- (a) Find f'(x). [3]
- (b) Show that the curve with equation y = f(x) has a stationary point in the interval 0.3 < x < 0.4

0.1.		

[9]

. Given that		
	$\int_0^{\frac{2\pi}{3}} \frac{1}{5 + 4\cos(x)} \mathrm{d}x = a$	$\pi, \qquad a \in \mathbb{Q},$
	$J_0 = 5 + 4\cos(x)$	

use the substitution $t = \tan\left(\frac{1}{2}x\right)$ to find the value of a.

[9]

4.	The	curve	C	has	equation
----	-----	-------	---	-----	----------

$$y = a \cosh\left(\frac{x}{a}\right),\,$$

where a is a positive constant.

The area bounded by the curve C, the x-axis and the lines x=-a and x=a is rotated through 2π radians about the x-axis.

Show that the curved surface area of the solid generated is $\pi a^2(\sinh(2) + 2)$.

7. The intrinsic equation of the curve C is $s = 2\psi$.	
Given that s is measured from the origin,	
(a) find a Cartesian equation of C ,	[9
(b) sketch C .	[2
	Total: 1:

6.	. (a) Using the definition	ns of hyperbolic functions in t	terms of exponential functions, prove	that [4]
			/ X / X / X	
		$\cosh(x+y) \equiv \cosh(x)\cosh$	$(y) + \sinh(x)\sinh(y)$.	

Given that

$$5\cosh(x) + 4\sinh(x) \equiv R\cosh(x + \alpha),$$

find

(b) the value of R ,	
------------------------	--

- (c) the value of α , giving your answer in terms of natural logarithms.
- (d) Hence, or otherwise, state the minimum value of $5\cosh(x) + 4\sinh(x)$.

Total: 11

[3]

[3]

[1]

[5]

[6]

Total: 11

7.

$$I_n = \int_0^1 x^n e^{x^2} dx, \quad n \ge 0.$$

(a) Show that

$$I_n = \frac{1}{2}e - \frac{1}{2}(n-1)I_{n-2}, \quad n \ge 2.$$

(b) Hence find

$$I_n = \int_0^1 x^5 \mathrm{e}^{x^2} \, \mathrm{d}x,$$

giving your answer in terms of e.

[5]

[9]

14

8.	The line with equation $y = mx + c$ is a tangent to the parabola with equation $y^2 = 8x$.	
	(a) Show that $mc = 2$.	
	The lines l_1 and l_2 are tangents to both the parabola with equation $y^2 = 8x$ and the circle with equation $x^2 + y^2 = 2$.	th
	(b) Find the equations of l_1 and l_2 .	
		Total:

