Solomon Practice Paper

Pure Mathematics 5D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	11	
4	12	
5	13	
6	13	
7	16	
Total:	75	

How I can achieve better:

•

•

•

1.

$$y = \frac{\operatorname{cosech}(x)}{x^2 + 1}.$$

(a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

[4]

[1]

(b) Find the value of $\frac{\mathrm{d}y}{\mathrm{d}x}$ when x=0.5, giving your answer to 2 decimal places.

Total: 5

[5]

2. A curve has intrinsic coordinates (s, ψ) and radius of curvature ρ . Given that $\rho = 2(s+a)$, where a is constant, show that the intrinsic equation of the curve can be written in the form

$$s = Ae^{2\psi} - a,$$

where A is constant.

100
(0)

Total: 11

3. (a) Prove that		[5]
	$\sinh(3x) \equiv 4\sinh^3(x) + 3\sinh(x).$	

(b) Hence, or otherwise, solve the equation [6]

$$\sinh(3x) = 7\sinh^2(x),$$

giving your answers in terms of natural logarithms where appropriate.

- 4. (a) Find $\int \frac{1}{\sqrt{9-4x^2}} dx$. [3]
 - (b) Find $\int \frac{1-2x}{\sqrt{9-4x^2}} \, \mathrm{d}x$. [3]
 - (c) Hence, or otherwise, solve the differential equation [6]

$$\sqrt{9-4x^2}\frac{\mathrm{d}y}{\mathrm{d}x} = y(1-2x),$$

given that y = 1 when x = 0.

- 5. The curve C has equation $y^2 = 4ax$, where a is a positive constant.
 - (a) Show that an equation of the tangent to C at the point $P(ap^2, 2ap), p \neq 0$, is

[4]

$$yp = x + ap^2.$$

The point $Q(aq^2, 2aq)$, is on C where $q \neq 0$ and $p \neq q$. The chord PQ passes through the focus of C. Show that

(b) pq = -1, [5]

(c) the tangent to C at P and the tangent to C at Q meet on the directrix of C .	[4]
--	-----

6.

$$I_n = \int_0^{\frac{\pi}{4}} \sec^n(x) \, \mathrm{d}x, \quad n \ge 0.$$

(a) Show that

 $(n-1)I_n = \sqrt{2}^{n-2} + (n-2)I_{n-2}, \quad n \ge 2.$

(b) Hence find the exact value of I_3 , giving your answer in terms of natural logarithms.

Total: 13

[7]

[6]

7	(~)	Show	that
(.	(a)	Show	unat

$$\int \sqrt{a^2 + x^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \operatorname{arcsinh}\left(\frac{x}{a}\right) + c.$$

The parametric equations of the curve C are

$$x = 2t$$
, and $y = t^2$, $0 \le t \le 3$.

(b) Show that the length of
$$C$$
 is given by

$$2\int_0^2 \sqrt{1+t^2} \,\mathrm{d}t.$$

(c) Find the length of
$$C$$
.

[3] Total: 16

[9]

