Solomon Practice Paper

Pure Mathematics 5C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	10	
4	12	
5	12	
6	13	
7	16	
Total:	75	

How I can achieve better:

•

•

•

[5]

1.	The	curve (C	has	intrinsic	equation
----	-----	---------	---	-----	-----------	----------

$$s = 4\sec^3(\psi), \quad 0 \le \psi < \frac{\pi}{2}.$$

Find the radius of curvature of C at the point where $\psi = \frac{\pi}{4}$.

000	
600	
	S

 ${\bf www. Casper YC. club}$ Last updated: July 14, 2025

[7]

2.	Solve the equation				
	$5\coth(x) + 1 = 7\operatorname{cosech}(x),$				
	giving your answer in terms of natural logarithms.				

Last updated: July 14, 2025

[3]

[7]

3.	(a) Show that			
		А	1	

$$\frac{\mathrm{d}}{\mathrm{d}x}\arccos(x) = -\frac{1}{\sqrt{1-x^2}}.$$

$$y = \arccos(x) - \frac{1}{2}\ln(1 - x^2), \quad -1 < x < 1,$$

has a stationary point in the interval 0 < x < 1.

Find the exact coordinates of this stationary point.

Total: 10

Total: 12

- 4. (a) Express $3 6x 9x^2$ in the form $a (bx + c)^2$ where a, b and c are constants. [2] Hence, or otherwise, find
 - $\int \frac{1}{\sqrt{3 6x 9x^2}} \, \mathrm{d}x,\tag{4}$
 - (c) expressing your answer to part (c) in terms of natural logarithms. [6]

$$\int_{-\frac{1}{3}}^{0} \frac{1}{\sqrt{3 - 6x - 9x^2}} \, \mathrm{d}x,$$

5.

$$f(x) = \operatorname{arctanh}\left(\frac{x^2 - 1}{x^2 + 1}\right), \quad x > 0.$$

- (a) Using the definitions of $\sinh(x)$ and $\cosh(x)$ in terms of exponentials, express $\tanh(x)$ in terms of e^x and e^{-x} .
- (b) Hence prove that $f(x) = \ln(x)$. [6]
- (c) Hence, or otherwise, show that the area bounded by the curve $y = \operatorname{arctanh}\left(\frac{x^2 1}{x^2 + 1}\right)$, the positive x-axis and the line x = 2e is $2e \ln(2) + 1$.

Total: 12

Last updated: July 14, 2025

6. The ellipse C has equation

$$\frac{x^2}{25} + \frac{y^2}{9} = 1.$$

(a) Find an equation of the normal to C at the point $P(5\cos(\theta), 3\sin(\theta))$.

[5]

[8]

The normal to C at P meets the coordinate axes at Q and R.

Given that ORSQ is a rectangle, where O is the origin,

(b) show that, as θ varies, the locus of S is an ellipse and find its equation in Cartesian form.

Total: 13

	/

Last updated: July 14, 2025

[7]

7.

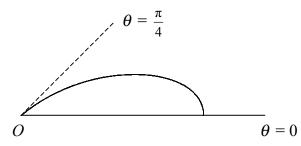
$$I_n(x) = \int_0^x \cos^n(2t) \, \mathrm{d}t, \qquad n \ge 0.$$

- (a) Show that $nI_n(x) = \frac{1}{2}\sin(2x)\cos^{n-1}(2x) + (n-1)I_{n-2}(x), \quad n \neq 2.$
- (b) Find $I_0\left(\frac{\pi}{4}\right)$ in terms of π .

Figure shows the curve with polar equation

$$r = a\cos^2(2\theta), \qquad 0 \le \theta \le \frac{\pi}{4},$$

where a is a positive constant.



(c) Using your answers to parts (a) and (b), or otherwise, calculate the area bounded by the curve and the half-lines $\theta = 0$ and $\theta = \frac{\pi}{4}$.

Total: 16

