Solomon Practice Paper

Pure Mathematics 5B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	8	
3	9	
4	11	
5	12	
6	13	
7	15	
Total:	75	

How I can achieve better:

•

•

•

[7]

1	Given	+12-4
	CTIVELL	ыны

$$y\arccos(x) - \frac{x}{\pi}e^{2x} - 1 = 0,$$

find the value of at the point where x = 0, giving your answer in terms of π .

 ${\bf www. Casper YC. club}$ Last updated: July 14, 2025

[8]

0	

۴ı	(r)	۱ —	5	cosh	(r)	۱ ـ	3	sinh	(r)	١
L (x) =	J	COSII	\mathcal{X}) +	o	SIIIII	(x)).

$I(x) = S \operatorname{cosin}(x) + S \operatorname{simi}(x)$.				
The minimum value of $f(x)$ occurs at the point $(p \ln(q), r)$ where p, q and r are integers.				
Find the values of p, q and r .				
That the values of p, q and r.				

[5]

Э.	The line $y = mx + c$ is a tangent to the rectangular hyperbola with equation $xy = -9$.	
	(a) Show that $c = \pm 6\sqrt{m}$.	[4]

(b) Hence, or otherwise, find the equations of the tangents from the point (4, -2) to the rectangular hyperbola xy = -9.

angular hyperbola $xy = -9$.	
	Total: 9

Last updated: July 14, 2025

[11]

4.	The	curve	C	is	defined	by
----	-----	-------	---	----	---------	----

$$y^2 = x, \quad x \ge 0, \quad y \ge 0.$$

The region between C, the x-axis and the line x=1 is rotated through 2π about the x-axis. Show that the area of the surface generated is

$$\frac{\pi}{6} \left(5\sqrt{5} - 1 \right).$$

Last updated: July 14, 2025

5. (a) Using the definition of $\cosh(x)$ in terms of exponential functions, express $\operatorname{sech}(x)$ in terms of e^x and e^{-x} .

(b) Sketch the graph of $y = \operatorname{sech}(x)$.

[2]

(c) Show that

[4]

$$\int \operatorname{sech}(x) \, \mathrm{d}x = 2 \arctan\left(\mathrm{e}^x\right) + c.$$

The curve C has equation $y = \operatorname{sech}(x)$. The region between C, the x-axis and the lines x = -a and x = a, where a is a positive constant, is rotated through 2π about the x-axis.

[4]

[1]

(d) Find the volume of revolution of the solid generated.

_ -

(e) Find the limit of the volume of revolution as $a \to \infty$.

Total:	12

6.

$$I_n \int_0^{\sqrt{2}} \left(2 - x^2\right)^n \, \mathrm{d}x, \quad n \ge 0.$$

(a) Show that

$$I_n = \frac{4n}{2n+1}I_{n-1}, \quad n \ge 1.$$

(b) Hence evaluate I_3 , leaving your answer in surd form.

Total: 13

[9]

[4]

Last updated: July 14, 2025

[4]

[7]

Total: 15

7. The curve C has intrinsic equation

$$s = \ln\left(\tan\left(\frac{1}{2}\psi\right)\right), \quad 0 < \psi \le \frac{\pi}{2}.$$

(a) Show that radius of curvature of C is given by $\rho \csc(\psi)$.

Given that $y = \psi = \frac{\pi}{2}$ when x = 0,

- (b) show that $y = \psi$, [4]
- (c) use integration to show that a Cartesian equation of C is $x = \ln(\sin(y))$.

