Solomon Practice Paper

Pure Mathematics 5A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	8	
3	9	
4	10	
5	10	
6	10	
7	11	
8	12	
Total:	75	

How I can achieve better:

•

•

•

[5]

1	Α	curve	has	the	equation
Ι.	Λ	curve	mas	une	equation

$$y = x + 2x^2 + 5x^3.$$

Last updated: July 14, 2025

Show that the radius of curvature of the curve at the origin is $\frac{1}{\sqrt{2}}$.

100	
7	

2. Show that		[8]
	$\int_0^{\ln(2)} x \operatorname{sech}^2(x) \mathrm{d}x = \frac{3}{5} \ln(2) - \ln\left(\frac{5}{4}\right).$	

[3]

Total: 9

3.	(a) Prove that		
		$\frac{\mathrm{d}}{\mathrm{d}x}\arcsin(2x) = \frac{2}{\sqrt{1-4x^2}}.$	

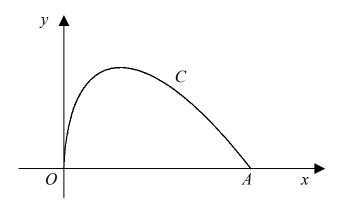
Given that

$$f(x) = 2x \arcsin(2x) + \sqrt{1 - 4x^2},$$

(b) Show that		[6]
	f''(x) [f(x) - xf'(x)] = 4.	

4. The parametric coordinates of the curve C shown above are

$$x = t^2$$
, and $y = t - \frac{1}{3}t^3$, $0 \le t \le a$.



The curve C meets the x-axis at the point A where t=a.

(a) Find the value of a.

[2]

The curve C is rotated through 2π about Ox.

(b) Find the surface area of the solid generated.

Total: 10

[8]

5.	(a) Using the definitions of $\cosh(x)$ and $\sinh(x)$ in terms of e^x and e^{-x} , prove that	[3]
	$\cosh(2x) = 2\cosh^2(x) - 1.$	
	(b) Solve the equation	[7]
	$2\cosh(2x) = 13\cosh(x) - 12,$	
	giving your answers in terms of natural logarithms.	
		Total: 10

6.

$$x^{2} - 10x + 41 \equiv (x+a)^{2} + b.$$

(a) Find the values of the constants a and b.

[2] [8]

(b) Show that

$$\int_{5}^{9} \frac{x}{\sqrt{x^2 - 10x + 41}} \, \mathrm{d}x = p\left(\sqrt{2} - 1\right) + q\ln(r),$$

stating your values of p, q and r.

Total:	10

CasperYC.club	Last updated: July 14, 2025	

7.

$$I_n = \int_0^{\frac{\pi}{2}} x^n \cos(x) \, \mathrm{d}x \quad n \ge 0.$$

(a) Prove that

$$I_n = \left(\frac{\pi}{2}\right) - n(n-1)I_{n-2}, \qquad n \ge 2.$$

(b) Hence find the value of I_4 , giving your answer in terms of π .

[6]

[5]

Total: 11

- 8. The rectangular hyperbola C has equation $xy = c^2$, where c is a positive constant.
 - (a) Show that an equation of the tangent to C at the point $P\left(cp,\frac{c}{p}\right)$ is

[4]

$$x + yp^2 = 2cp.$$

The tangent to C at P meets the x-axis at the point X.

The point Q on C has coordinates $\left(cq,\frac{c}{q}\right), q \neq p$ such that QX is parallel to the y-axis.

(b) Show that q = 2p.

[3]

M is the mid-point of PQ.

(c) Find, in Cartesian form, an equation of the locus of M as p varies.

[5]

Total: 12

