Solomon Practice Paper

Pure Mathematics 4H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	8	
3	9	
4	9	
5	10	
6	15	
7	18	
Total:	75	

How I can achieve better:

•

•

•

1. (a) Given that f(r) = r!, show that $f(r+1) - f(r) = r \times r!$.

[2]

(b) Hence find $\sum_{r=1}^{n} (r \times r!)$.

[4]

2. (a) Given that

$$y = \frac{2x}{x^2 + 9},$$

express x in terms of y.

(b) Hence prove that for all real values of x

[3]

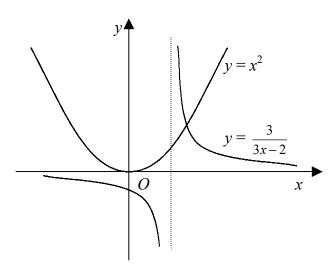
[5]

$$-\frac{1}{a} \le \frac{2x}{x^2 + 9} \le \frac{1}{a},$$

Last updated: July 14, 2025

where a is a positive integer which you should find.

[9]


3.	Find	the	general	solution	of the	${\it differential}$	equation
----	------	-----	---------	----------	--------	----------------------	----------

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + xy = 1 - y,$$

giving your answer in the form $y = f(x)$.	

4. Figure shows part of the curves $y = x^2$ and $y = \frac{3}{3x - 2}$.

The curves meet at the point with x-coordinate α .

(a) Find the integer N such that $\frac{N}{10} < \alpha < \frac{N+1}{10}$.

[4] [5]

(b) Use interval bisection on the interval found in part (a) to find the value of α correct to 2 decimal places.

Total: 9

Last updated: July 14, 2025

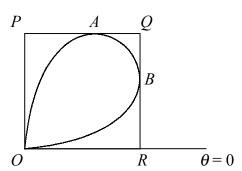
5. Given that

$$f(z) \equiv z^4 - 4z^3 + kz^2 - 4z + 13,$$

where k is a real constant, and that $z = \mathbf{i}$ is a solution of the equation f(z) = 0,

(a) show that k = 14,

[3]


(b) find all solutions of the equation f(z) = 0.

[7]

6. The shape of a company logo is to be the region enclosed by the curve with polar equation

$$r^2 = a^2 \sin(2\theta), \quad 0 \le \theta \le \frac{\pi}{2}.$$

A sign in the shape of the logo is to be made by cutting the area enclosed by the curve from a square sheet of metal OPQR where O is the pole and R lies on the initial line, $\theta = 0$, as shown in Figure.

PQ and QR are tangents to the curve, parallel and perpendicular to the initial line respectively, at the points A and B on the curve.

- (a) Find the value of θ at the point A. [7]
- (b) Show that the area of OPQR is $\frac{3\sqrt{3}}{8}a^2$.

[5]

[3]

(c) Find the area of the metal sheet which is not used.

7. Given that $x = ke^{-t}$ satisfies the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 5\frac{\mathrm{d}x}{\mathrm{d}t} + 6x = 8\mathrm{e}^{-t},$$

- (a) find the value of k. [3]
- (b) Hence find the solution of the differential equation for which x = 1 and $\frac{dx}{dt} = 3$ at t = 0. [8]

The maximum value of x occurs when t = T.

(c) Show that the maximum value of x is $\frac{40}{27}$ and find the value of T.

Total: 18

[7]

Last updated: July 14, 2025