Solomon Practice Paper

Pure Mathematics 4G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	9	
4	11	
5	12	
6	12	
7	17	
Total:	75	

How I can achieve better:

•

•

•

[7]

1.	Find the set of values of x for which	$\frac{x^2 - 12}{x} \ge 1.$

[7]

2.	Show	that	the sum	of the	first n	terms	of the	series

_	_	_	_	
- 2 .	2	103 .	1 - 2	
+ c	9 +	$-13^3 +$	- 17	+

is	given	by	$\frac{1}{3}n(16n^2 + 36n + 23).$
----	-------	----	-----------------------------------

Last updated: July 14, 2025

[5]

[2]

Total: 9

3.

$$f(x) \equiv x^3 - 5x^2 + 2.$$

- (a) Show that the equation f(x) = 0 has a root α in the interval [0,1].
- (b) Use the Newton-Raphson method with initial value x=0.5 to find a value for α which is correct to 2 decimal places.
- (c) Give a reason why the Newton-Raphson method fails if an initial value of x = 0 is used in part (b).

Last updated: July 14, 2025

4. The complex number z is given by

$$z = \frac{1 + \mathbf{i}\sqrt{3}}{1 - \mathbf{i}\sqrt{3}}.$$

- (a) Show that z can be expressed in the form $\lambda(1 i\sqrt{3})$ where λ is a rational number which you should find.

[4]

(b) Find the modulus and argument of z.

[3]

(c) Hence, or otherwise, find the modulus and argument of

[4]

$$\left(\frac{1+\mathbf{i}\sqrt{3}}{1-\mathbf{i}\sqrt{3}}\right)^4.$$

Total: 11

5. (a) Find the values of p and q such that $y = p\sin(x) + q\cos(x)$ is a particular integral of the differential equation [7]

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = \sin(x).$$

(b) Find the general solution of this differential equation.

Total: 12

[5]

6. (a) Show that

$$\int 2 \cot(x) dx = \ln(\sin^2(x)) + c,$$

where c is an arbitrary constant.

(b) Find the general solution of the differential equation

[5]

[3]

$$\sin(x)\frac{\mathrm{d}y}{\mathrm{d}x} + 2y\cos(x) = 1.$$

Given that y = 0 when $x = \frac{\pi}{4}$,

(c) show that when $x = \frac{\pi}{3}$,

 $y = \frac{2}{3} \left(\sqrt{2} - 1 \right).$

Total: 12

[4]

Last updated: July 14, 2025

7. Figure shows the curve C with polar equation

$$r = 2(1 + \cos(\theta)), \quad -\pi < \theta \le \pi,$$

and the line l with polar equation

$$r\cos(\theta) = \frac{3}{2},$$

referred to the pole O and initial line $\theta = 0$.

- (a) Find the polar coordinates of the points A and B, where l intersects C.

[6]

[3]

(b) Show that the area of triangle OAB is $\frac{9\sqrt{3}}{4}$.

[8]

(c) Hence find the area of the shaded region bounded by C and l.

Total: 17

