Solomon Practice Paper

Pure Mathematics 4F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	7	
3	7	
4	7	
5	10	
6	10	
7	14	
8	16	
Total:	75	

How I can achieve better:

•

•

•

[4]

1. Figure shows the curve with polar equation

$$r = a\theta, \quad 0 \le \theta < 2\pi, \quad a > 0.$$

Find the area of the finite region bounded by the curve and the initial line $\theta = 0$	0.
---	----

[7]

_		-						
')	Lind	tha	ant of	values	of m	for	TTThia	ŀ
Ζ.	T' HHCL	тие з	Set or	values	$\mathbf{OL}[\mathcal{U}]$	Ю	WILIC	ı

$$\frac{(x-1)(x+2)}{x+4} > 4.$$

Last updated: July 14, 2025

//	
	00
\	

3.

$$f(x) = 3x^5 - 7x^2 + 3.$$

- (a) Show that there is a root, α , of the equation f(x) = 0 in the interval [0, 1].
- (b) Use linear interpolation once on the interval [0,1] to estimate the value of α .

[2]

Total: 7

There is another root, β , of the equation f(x) = 0 close to -0.62.

(c) Use the Newton-Raphson method once to obtain a second approximation to β , giving your answer correct to 3 decimal places.

Last updated: July 14, 2025

4. The Cartesian equation of the curve C is

$$(x^2 + y^2)^2 = a^2(x^2 - y^2).$$

(a) Show that, in polar coordinates, the equation of curve C can be written as

[4]

$$r^2 = a^2 \cos(2\theta).$$

(b) Sketch the curve C for $0 \le \theta < 2\pi$.

[3] Total: 7

5. (a) Show that the substitution $y = \frac{1}{u}$ transforms the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} - xy^2 = 0 \tag{*}$$

into the differential equation

$$\frac{\mathrm{d}u}{\mathrm{d}x} - \frac{u}{x} + x = 0.$$

(b) Hence find the solution of differential equation \star such that y=1 when x=1, giving your answer in the form $y=\mathrm{f}(x)$.

Total: 10

000	
<u>(</u> 8)	

6. (a) Find $\sum_{r=n+1}^{2n} r^2$ in terms of n.

[4]

(b) Hence, or otherwise, show that

[6]

$$4 \le \frac{\sum_{r=n+1}^{2n} r^2}{\sum_{r=1}^{n} r^2} < 7$$

Last updated: July 14, 2025

for all positive integer values of n.

Total: 10

700

7. A particle moves along the x-axis such that at time t its x-coordinate satisfies the differential equation

$$2\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 5\frac{\mathrm{d}x}{\mathrm{d}t} - 3x = 20\sin(t).$$

(a) Find the general solution of this differential equation.

[10]

Initially the particle is at x = 5.

Given that the particle's x-coordinate remains finite as $t \to \infty$,

(b) find an expression for x in terms of t.

[4]

Total: 14

8. The complex numbers z_1 and z_2 are given by

$$z_1 = \frac{1+\mathbf{i}}{1-\mathbf{i}}$$
, and $z_2 = \frac{\sqrt{2}}{1-\mathbf{i}}$.

- (a) Find z_1 in the form $a + \mathbf{i}b$ where a and b are real. [2]
- (b) Write down the modulus and argument of z_1 . [2]
- (c) Find the modulus and argument of z_2 . [4]
- (d) Show the points representing z_1, z_2 and $z_1 + z_2$ on the same Argand diagram, and hence find the exact value of $\tan\left(\frac{3\pi}{8}\right)$.

(8)		
\ <i>\</i>		
		Total: 16

Last updated: July 14, 2025

