Solomon Practice Paper

Pure Mathematics 4E

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	9	
4	10	
5	12	
6	13	
7	17	
Total:	75	

How I can achieve better:

•

•

•

- 1. The complex number w is given by $w = \frac{10 + 5\mathbf{i}}{2 \mathbf{i}}$.
 - (a) Express w in the form $a + \mathbf{i}b$ where a and b are real.

[3] [4]

Total: 7

(b) Using your answer to part (a) find the complex number z such that

$$z + 2z^* = w.$$

[7]

2. Diffow tillat	2.	Show	that
------------------	----	------	------

$$\sum_{r=0}^{n} (r+1)(r+2) = \frac{1}{3}(n+1)(n+2)(n+3).$$

600

[9]

3. Find the equation of the curve which passes through the origin and for which

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y,$$

giving your answer in the form y = f(x).

Last updated: July 14, 2025

[8]

4. The curve C has the polar equation

$$r = a(1 + \sin(\theta)), \quad 0 \le \theta \le \frac{\pi}{2}.$$

- (a) Sketch the curve C.
- (b) Find the polar coordinates of the point on the curve where the tangent to the curve is perpendicular to the initial line $\theta = 0$.

Tot

5. (a) Find, in terms of a and b, the equations of the asymptotes to the curve with equation

tion [3]

$$y = \frac{ax - 1}{x + b},$$

where a and b are positive constants.

(b) Sketch the curve

[3]

$$y = \frac{ax - 1}{x + b},$$

showing the coordinates of any points of intersection with the coordinate axes.

(c) Hence, or otherwise, find the set of values of x for which

[6]

$$\left| \frac{3x - 1}{x + 2} \right| < 2.$$

Total: 12

	Jo	0/
6	C	2

6.	(a)	Show that the equation $e^x - 4\sin(x) = 0$ has a root, α , in the interval [0, 1] and a root, β , in the interval [1, 1.5].		
	(b)	Using the Newton-Raphson method with an initial value of $x=0.5,$ find α correct to 2 decimal places.	[[5]
	(c)	Use linear interpolation once between the values $x=1$ and $x=1.5$ to find an approximate value for β , giving your answer correct to 1 decimal place.	[[3]
	(d)	Determine whether or not your answer to part (c) gives the value of β correct to 1 decimal place.	[[2]
		T	Total: 1	L3

7. (a) Given that y is a function of t and that $x = t^{\frac{1}{2}}$, where x > 0, show that

i. $\frac{\mathrm{d}y}{\mathrm{d}x} = 2t^{\frac{1}{2}}\frac{\mathrm{d}y}{\mathrm{d}t},$

i.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2t^{\frac{1}{2}}\frac{\mathrm{d}y}{\mathrm{d}t},$$

ii. $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\frac{\mathrm{d}y}{\mathrm{d}t} + 4t\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}.$

[4]

(b) Use your answers to part (a) to show that the substitution $x=t^{\frac{1}{2}}$ transforms the differential equation

$$\frac{1}{x^2} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{4}{x} - \frac{1}{x^3}\right) \frac{\mathrm{d}y}{\mathrm{d}x} + 3y = 3x^2 + 5 \tag{*}$$

into the differential equation

$$4\frac{d^2y}{dt^2} + 8\frac{dy}{dt} + 3y = 3t + 5.$$

Last updated: July 14, 2025

(c) Hence find the general solution of differential equation \star .

[7]Total: 17

