Solomon Practice Paper

Pure Mathematics 4C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	9	
3	9	
4	10	
5	12	
6	13	
7	16	
Total:	75	

How I can achieve better:

•

•

•

[6]

	x-2 > 2 x+1 .	

2. (a) By using the substitution y = vx, or otherwise, find the general solution of the differential equation [7]

$$xy = \frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + y^2.$$

(b) Given also that y = 2 when x = 1, show that for x > 0

how that for $x > 0$	[2]

$$y^2 = 2x^2 (\ln(x) + 2).$$

Total: 9

Last updated: July 14, 2025

			_			_	
3. ((a)	Find	the	sum	of	the	series

$$2^3 + 4^3 + 6^3 + \ldots + (2n)^3$$
,

giving your answer in a simplified form.

(b) Hence, or otherwise, show that the sum of the series

[3]

$$1^3 - 2^3 + 3^3 - 4^3 + \ldots + (2n-1)^3 - (2n)^3$$

is
$$-n^2(4n+3)$$
.

Total: 9

 ${\bf www. Casper YC. club}$ Last updated: July 14, 2025

[10]

	4.	Find	the	general	solution	of t	he	differential	equation
--	----	------	-----	---------	----------	------	----	--------------	----------

Last updated: July 14, 2025

[2]

[7]

5. Figure shows part of the curve y = f(x) where

$$f(x) \equiv 2x - \tan(x), \quad x \in \mathbb{R}, \quad 0 \le x < \frac{\pi}{2}.$$

- (a) Show that there is a root, α , of the equation f(x) = 0 in the interval (1, 1.5).
- (b) Use the Newton-Raphson method with an initial value of x=1.25 to find α correct to 2 decimal places and justify the accuracy of your answer.
- (c) Explain with the aid of a diagram why the Newton-Raphson method fails if an initial value of x = 0.75 is used when trying to find α .

Total: 12

6. The complex numbers z and w are defined such that

$$3z + w = 14$$
$$z - \mathbf{i}w = 15 - 9\mathbf{i}$$

(a) Show that z = 3 - 4i and find w in the form $a + \mathbf{i}b$, where a and b are real numbers.

[7]

Total: 13

[6]

(b) Find the square roots of z in the form c + id, where c and d are real numbers.

7. Figure shows the curves with polar equations

$$r = 4\sin(2\theta), \quad 0 \le \theta \le \frac{\pi}{2}$$

 $r = 4\cos(\theta), \quad 0 \le \theta \le \frac{\pi}{2}$

(a)	Find the polar	coordinates of	the point	P	where the	e two	curves	intersect
-----	----------------	----------------	-----------	---	-----------	-------	--------	-----------

[5]

[11]

(b) Find the exact area of the shaded region bounded by the two curves.

Total: 16

