Solomon Practice Paper

Pure Mathematics 4B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	8	
3	9	
4	9	
5	10	
6	15	
7	18	
Total:	75	

How I can achieve better:

•

•

•

[6]

•	Find the set of values of x for which
	$ 2x^2 - 5x < x.$

Last updated: July 14, 2025

2. (a) Sketch the curve C with the polar equation											
	2.	(a)	Sketch	the	curve	C	with	the	polar	equati	or

[3]

$$r^2 = a^2 \sin^2(2\theta), \quad 0 \le \theta < 2\pi.$$

(b) Find the exact area of the region enclosed by one loop of the curve C. [5]

Total: 8

Last updated: July 14, 2025

0	() (1 +1 +		Г	<u>0</u> 1
3.	(a) Show that			6]
		n	1	

$$\sum_{r=1}^{n} (r^2 + 1)(r - 1) = \frac{1}{12}n(n - 1)(3n^2 + 5n + 8).$$

(b) Hence evaluate
$$\sum_{r=5}^{25} (r^2+1)(r-1). \label{eq:evaluate}$$

4. (a) Find the general solution of the differential equation

[6]

$$\frac{\mathrm{d}y}{\mathrm{d}x} - y\cot(x) = \sin(2x).$$

(b) Given also that y=2 when $x=\frac{\pi}{6}$, find the exact value of y when $x=\frac{2\pi}{3}$.

[3]

[8]

5.

$$f(x) \equiv x^3 - \ln(4 - x^2), \quad x \in \mathbb{R}, \quad -2 < x < 2.$$

- (a) Show that one root, α , of the equation f(x) = 0 lies in the interval $1.0 < \alpha < 1.1$. [2]
- (b) Starting with x = 1.0, show that using the Newton-Raphson method twice gives an approximation to α that is correct to 6 decimal places.

Total: 10

Last updated: July 14, 2025

6. The complex numbers z_1, z_2 and z_3 are given by

$$z_1 = 7 - \mathbf{i}, \quad z_2 = 1 + \mathbf{i}\sqrt{3}, \quad z_3 = a + \mathbf{i}b,$$

where a and b are rational constants.

Given that the modulus of z_1z_3 is 50,

(a) find the modulus of z_3 .

Given also that the argument of $\frac{z_2}{z_3}$ is $\frac{7\pi}{12}$,

- (b) find the argument of z_3 . [3]
- (c) Find the values of a and b. [2]
- (d) Show that $\frac{z_1}{z_3} = \frac{1}{5}(4+3\mathbf{i})$. [3]
- (e) Represent z_1, z_3 and $\frac{z_1}{z_3}$ on the same Argand diagram. [2]
- (f) By considering the modulus and argument of z_1 and z_3 , explain why

$$\frac{z_3}{z_1} = \left(\frac{z_1}{z_3}\right)^{\star}.$$

[2]

7. (a) Given that $x = e^t$, find $\frac{dy}{dx}$ in terms of $\frac{dy}{dt}$ and show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \mathrm{e}^{-2t} \left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t} \right).$$

(b) Show that the substitution $x = e^t$ transforms the differential equation

(c) Given that when x = 1, y = 3 and $\frac{dy}{dx} = -5$, solve the differential equation

[3]

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 6x^2$$

into the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\frac{\mathrm{d}y}{\mathrm{d}t} - 3y = 6\mathrm{e}^{2t}.$$

[10]

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 6x^2.$$

50