Solomon Practice Paper

Pure Mathematics 4A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	6	
4	7	
5	9	
6	12	
7	14	
8	15	
Total:	75	

How I can achieve better:

•

•

•

[1]

[5]

Total: 6

1.

$$f(z) \equiv z^3 - 5z^2 + 17z - 13.$$

- (a) Show that (z-1) is a factor of f(z).
- (b) Hence find all the roots of the equation f(z) = 0, giving your answers in the form a + ib where a and b are integers.

[6]

2.	Find	the	general	solution	of	the	differential	equation
⊿.	1 IIIG	UIIC	gonorai	SOLUTION	OI	UIIC	differential	Cquauton

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = \frac{\mathrm{e}^x}{x^2},$$

Last updated: July 14, 2025

giving your answer in the form $y = 0$	= f(x).
--	---------

3. (a) Express $\frac{1}{r(r+1)}$ in partial fractions.

[2]

(b) Hence, or otherwise, find

[4]

$$\sum_{r=3}^{35} \frac{1}{r(r+1)},$$

giving your answer as a fraction in its lowest terms.

[7]

1.	Find the set of values of x for which	$\frac{(x+3)^2}{x+1} < 2.$

Last updated: July 14, 2025

5	(a)	Sketch	the	curve	with	nolar	equation
J. 1	(a)	SKetch	une	curve	WILLI	porar	equation

[3]

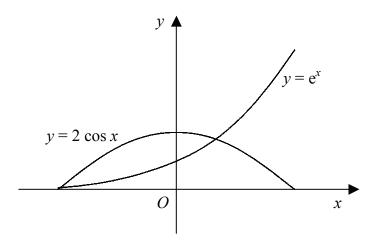
$$r = a\cos(3\theta), \quad a > 0, \quad \text{for} \quad 0 \le \theta \le \pi.$$

(b) Show that the total area enclosed by the curve $r = a\cos(3\theta)$ is $\frac{\pi a^2}{4}$.

Total: 9

[6]

[1]

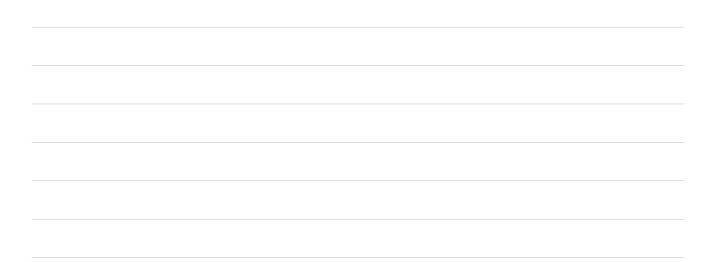

[2]

[4]

[2]

Total: 12

6. Figure shows the curves $y = 2\cos(x)$ and $y = e^x$ in the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.



Given that $f(x) \equiv e^x - 2\cos(x)$,

- (a) write down the number of solutions of the equation f(x) = 0 in the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.
- (b) Show that the equation f(x) = 0 has a solution, α , in the interval [0, 1].
- (c) Using 0.5 as a first approximation to α , use the Newton-Raphson process once to find an improved estimate for α , giving your answer correct to 2 decimal places.
- (d) Show that the estimate of α obtained in part (c) is accurate to 2 decimal places.

There is another root, β , of the equation f(x) = 0 in the interval [-2, -1].

(e) Use linear interpolation once on this interval to estimate the value of β , giving your answer correct to 2 decimal places. [3]

7. The complex numbers z and w are such that

$$z = \frac{A}{1-i} \quad \text{and} \quad w = \frac{B}{2+i},$$

where A and B are real.

Given that z + w = 6,

(a) find A and B.

[6]

z and w are represented by the points P and Q respectively on an Argand diagram.

(b) Show P and Q on the same Argand diagram.

[5]

[3]

(c) Find the distance PQ in the form $a\sqrt{5}$.

Total: 14

Last updated: July 14, 2025

8.	(a)	Find	the	values	of p	and	q	such	tha
----	-----	------	-----	--------	--------	-----	---	------	-----

[6]

$$x = p\cos(t) + q\sin(t)$$

satisfies the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 3x = \sin(t).$$

(b) l	Hence find the solution of thi	s differential equa	tion for which	x = 1 and	$\frac{\mathrm{d}x}{\mathrm{d}t} = 12 \text{ at } t = 0.$		[9]
					I	Total:	15

