Solomon Practice Paper Pure Mathematics 3J Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 5 | | | 2 | 5 | | | 3 | 8 | | | 4 | 10 | | | 5 | 10 | | | 6 | 12 | | | 7 | 12 | | | 8 | 13 | | | Total: | 75 | | ## How I can achieve better: • • • [5] | 1. | Given | that | |----|-------|------| | | | | $$\frac{x^2 + 9x - 10}{(x-2)^2(x+1)} \equiv \frac{A}{(x-2)^2} + \frac{B}{x-2} + \frac{C}{x+1},$$ find the values of A, B and C. [5] | 2. Show that | | |--------------|---| | | $\int_{2}^{4} x \left(x^{2} - 4\right)^{\frac{1}{2}} dx = 8\sqrt{3}.$ | Last updated: July 14, 2025 | 3. | (a) | Find the binomial expansion of $(1+4x)^{\frac{1}{4}}$ for $ x <\frac{1}{4}$ in ascending powers of x as far as the term in x^3 . | [3] | |----|-----|--|----------| | | (b) | By substituting $x=0.01$ into your expansion, find the fourth root of 16.64 correct to 6 decimal places. | [5] | | | | | Total: 8 | 4. (a) Use the identity | | [4 | |-------------------------|--|----| | | $\cot(x) \equiv \frac{\cos(x)}{\sin(x)}$ | - | | to show that | d = 2(| | (b) Use integration by parts to find $\int x \csc^2(x) dx. \tag{6}$ | Total: 10 | |-----------| 5. At time t the vectors \mathbf{r} and \mathbf{s} are given by $$\mathbf{r} = 2t^2\mathbf{i} - t\mathbf{j} + \mathbf{k},$$ $\mathbf{s} = (t+2)\mathbf{i} + (t^2+5)\mathbf{j} + (1-t^3)\mathbf{k}.$ - (a) Find the angle between \mathbf{r} and \mathbf{s} when t=2, giving your answer in degrees correct to 1 decimal place. [5] - (b) Find the values of t for which \mathbf{r} and \mathbf{s} are perpendicular. Total: 10 [5] | | | 0 | |--|--|---| | | | C | 6. Figure shows the circle C with equation $x^2 + y^2 + 10x - 16y + 85 = 0$ and the line l with equation 2x - 3y + 8 = 0. (a) Find an equation of the line which is perpendicular to line l and passes through the centre of circle C. (b) Hence, or otherwise, find the minimum distance between l and C. Total: 12 [7] [5] 7. A physics student is investigating the change in the size of an air bubble as it rises in water. The student believes that the volume, V m³ of a bubble is related to its depth, h m, by the formula $$V = \frac{k}{h+10},$$ where k is a constant. A bubble of volume 0.1 m³ is formed at a depth of 5 m in a water tank. Using the student's model, - (a) find the volume of the bubble when it has risen 3 m, (hint: h = 5 3 = 2) [4] - (b) show that, at this instant, V is increasing at the rate of $\frac{1}{96}$ m³ per metre the bubble rises. [3] Assuming that the bubble is spherical as it rises, (c) find, correct to 2 significant figures, the rate at which the radius of the bubble is increasing per metre the bubble rises at the instant when it has risen 3 m. Last updated: July 14, 2025 Total: 12 8. (a) By taking logarithms, prove that if $x = 3^{1-t}$, then $$\frac{\mathrm{d}x}{\mathrm{d}t} = -\left(\ln(3)\right)3^{1-t}.$$ A curve has parametric equations $$x = 3^{1-t}$$ and $y = 9^t - 1$. (b) Show that $$\frac{\mathrm{d}y}{\mathrm{d}x} = (-2) \cdot 3^{3t-1}.$$ - (c) Find an equation of the tangent to the curve at the point (3,0). - (d) Find a Cartesian equation for the curve. Total: 13 [3] [3] [3] Last updated: July 14, 2025