Solomon Practice Paper Pure Mathematics 3H Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | | |----------|--------|-------|--| | 1 | 6 | | | | 2 | 6 | | | | 3 | 7 | | | | 4 | 9 | | | | 5 | 10 | | | | 6 | 10 | | | | 7 | 12 | | | | 8 | 15 | | | | Total: | 75 | | | ## How I can achieve better: • • • | In the series expansion of $(1+2x)^k$, for $ x <\frac{1}{2}$, the coefficient of x^2 is 24. (a) Find the two possible values of k . | [| |--|--------| | Given that $k < 0$, | | | (b) find the coefficient of x^3 in the expansion. | [| | | Total: | Last updated: July 14, 2025 [6] | 2. | Use integration by parts to evaluate | |----|--| | | $\int_0^{\frac{\pi}{2}} x \cos(x) \mathrm{d}x,$ | | | giving your answer in terms of π . | Last updated: July 14, 2025 3. $$f(x) \equiv \frac{x - 11}{(x + 4)(x - 2)}.$$ (a) Express f(x) in the form $$\frac{A}{x+4} + \frac{B}{x-2}.$$ (b) Evaluate f'(1), giving your answer as an exact fraction. [4] [3] Total: 7 [9] | 4. | The | functions | f | and | g | are | defined | by | |----|-----|-----------|---|-----|---|-----|---------|----| |----|-----|-----------|---|-----|---|-----|---------|----| $$f: x \mapsto (x-2)^2,$$ $g: x \mapsto ax + b,$ where a and b are integer constants. Given that when fg(x) is divided by (x-1) the remainder is 1 and that (2x-3) is a factor of gf(x), find the values of a and b. **200** [3] [1] [6] 10 | 5. | Relative to a fixed origin, O , the points A and B have position vectors $(\mathbf{i}+2\mathbf{j}-6\mathbf{k})$ and $(15\mathbf{i}+9\mathbf{j}+\mathbf{k})$ respectively. | | | | | | | |----|---|--------|--|--|--|--|--| | | (a) Find, in vector form, an equation of the line AB . | | | | | | | | | The point C has position vector $(5\mathbf{i} + \mathbf{j} + 2\mathbf{k})$. | | | | | | | | | (b) Find the length AC . | | | | | | | | | The point D lies on the line AB such that $\angle ADC = \angle DAC$. | | | | | | | | | (c) Find the position vector of the point D . | | | | | | | | | | Total: | 6. Figure shows the circles C_1 and C_2 . Circle C_1 has the equation $$x^2 + y^2 - 16x - ky + 84 = 0,$$ where k is a positive constant. (a) Find in terms of k [5] - i. the coordinates of the centre of C_1 , - ii. the radius of C_1 . Circle C_2 has the equation $$x^2 + y^2 - 36 = 0.$$ Last updated: July 14, 2025 Given that circles C_1 and C_2 are touching, (b) find the value of k. Total: 10 [5] [6] [3] [3] 12 | 7. | A computer screen saver program generates a coloured region of random size and shape. The region then expands until it fills the screen. A new region of a different colour is then formed. | | | | | |----|--|--------|--|--|--| | | The program is written so that the rate at which the area of the region increases is proportion to its current area. | al | | | | | | (a) By forming and solving a differential equation, show that t seconds after it is formed the area, $A \text{ cm}^2$, of the region is given by $A = A_0 e^{kt}$, where A_0 is the initial area of the region in cm ² and k is a constant. | | | | | | | Given that once formed the area of a region increases by 50% in 0.4 seconds, | | | | | | | (b) find the value of k correct to 4 significant figures. | | | | | | | A coloured region of area 3.6 cm ² is generated on a screen measuring 24 cm by 32 cm. | | | | | | | (c) Find, in seconds correct to 1 decimal place, how long it takes for the region to fill the screen | a. | | | | | | | Total: | 8. A curve is defined parametrically by $$x = \frac{2t}{1+t}$$, and $y = \frac{t^2}{1+t}$, $t \neq -1$. (a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of t. [5] The point P on the curve has coordinates $(1, \frac{1}{2})$. (b) Show that the normal to the curve at P has the equation [5] $$4x + 6y - 7 = 0.$$ The normal to the curve at P meets the curve again at the point Q. (c) Find the coordinates of Q. [5] Total: 15 | 000 | | |-----|--| | (8) | |