Solomon Practice Paper

Pure Mathematics 3D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	8	
4	8	
5	10	
6	10	
7	13	
8	16	
Total:	77	

How I can achieve better:

•

•

•

1. A curve is given by the parametric equations

$$x = 1 + t^2$$
, and $y = 2t^6$.

(a) Find an equation of the curve in Cartesian form.

[2]

[3]

(b) Sketch the curve, labelling the coordinates of any points where the curve meets the coordinate axes.

Total: 5

2. The lines l_1 and l_2 are given by

$$l_1$$
: $\mathbf{r} = -38 + 8 + \mathbf{k} + \lambda(5\mathbf{i} - 7\mathbf{j} + 4\mathbf{k})$
 l_2 : $\frac{x-5}{2} = \frac{y+9}{3} + \frac{z-3}{6}$.

- /	· - \	17: 1			4:	r	7	·	vector for	
- ($^{\rm a}$	Fina	an	$e\alpha$	marion	TOT.	Lo	m	ACCIOI: 10	crn
١	ω_{j}	I III G	COLL	\sim 4	addioi	TOI	0 2	111	VCCCOI IO.	· III.

[3]

[4]

Total: 7

	\int

3. (a) Use integration by parts to find

$$\int 2x \ln(x) \, \mathrm{d}x.$$

(b) Given that y = 2e when x = e, solve the differential equation

ential equation	[4]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x\ln(x)}{y}.$$

Total: 8

[4]

Total: 8

4. A curve has the equation

$$4\cos(x) + \tan(y) = 0.$$

- (a) Show that $\frac{dy}{dx} = 4\sin(x)\cos^2(y)$. [3]
- (b) Find the equation of the normal to the curve at the point with coordinates $(\frac{\pi}{2}, \frac{\pi}{6})$ in the form ax + by + c = 0.



[3]

5. (a) Given that |x| < 1, express $(1+x)^{-1}$ as a series in ascending powers of x, as far as the term in x^3 .

(b) $f(x) \equiv \frac{4x+1}{(1-2x)(1+x)}.$ [7]

By expressing f(x) in partial fractions, find the series expansion of f(x) in ascending powers of x as far as the term in x^3 and state the set of values of x for which your series is valid.

		Tota

6. (a) Find $\int ta$	$\tan^2(3x)\mathrm{d}x.$
-----------------------	--------------------------

[3]

(b) Using the substitution $u = x^2 + 4$, or otherwise, evaluate

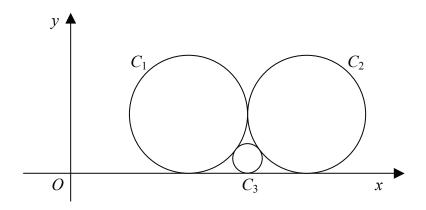
[7]

$$\int_0^2 \frac{5x}{(x^2+4)^2} \, \mathrm{d}x.$$

Total: 10

	'

7. Figure shows three circles, C_1, C_2 and C_3 which all touch the x-axis.



Circle C_1 has the equation $x^2 + y^2 - 12x - 8y + 36 = 0$.

(a) Find the coordinates of the centre of C_1 and write down its radius.

[5]

Circle C_2 has the same radius as C_1 and is touching circle C_1 .

(b) Find an equation of circle C_2 .

[3]

Circle C_3 is touching both circles C_1 and C_2 .

(c) Find an equation of circle C_3 .

Total: 13

[5]

8.	(a)	Α	curve	has	the	equation
----	-----	---	-------	-----	-----	----------

$$y = \frac{x}{\sqrt{x-2}}, \quad x > 2.$$

Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x-4}{2(x-2)^{\frac{3}{2}}}$$

(b) Find the coordinates of the stationary point on the curve.

[3]

[5]

(c) Find and simplify an expression for $\frac{d^2y}{dx^2}$.

[5]

[3]

(d) Hence, determine the nature of the stationary point on the curve.

Total: 16

	10