Solomon Practice Paper

Pure Mathematics 3C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	7	
3	8	
4	9	
5	10	
6	11	
7	13	
8	13	
Total:	75	

How I can achieve better:

•

•

•

[4]

$f(x) \equiv 2x^3 + kx^2 - 2k^2x + 9.$			
hen $f(x)$ is divided by (a	(x-2) the remainder	r is 1. Find the two	possible values of k .

- 2. Given that $y = (2x + 3)e^{-2x}$,
 - (a) find $\frac{\mathrm{d}y}{\mathrm{d}x}$,

[3] [4]

(b) show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = 0.$$

Total: 7

3. The binomial expansion of $(1+ax)^b$ in ascending powers of x as far as the term in x^2 is

$$1 - 10x + 75x^2 + \dots, \quad |ax| < 1.$$

(a) Find the values of the constants a and b.

[6]	
l O I	

(b) Find the coefficient of x^3 in the expansion.

[2]

Total	l:	8

- 4. Relative to a fixed origin, O, the points P and Q have position vectors $(2\mathbf{i} + 3\mathbf{j} + 8\mathbf{k})$ and $(6\mathbf{i} 2\mathbf{j} + 9\mathbf{k})$ respectively.
 - (a) Find, in vector form, an equation of the line l which passes through the points P and Q.

 $\mathbf{r} = 8\mathbf{i} + 6\mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} - 3\mathbf{k}).$

(b) Show that the point P lies on the line m.

The line m has the equation

[3] [3]

[3]

(c) Show that the lines l and m are perpendicular.

Total: 9

Last updated: July 14, 2025

5. Figure shows the curve with parametric equations

$$x = 2\sin(t)$$
, and $y = \tan(t)$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$.

(a) Find the value of t at the point with coordinates $(\sqrt{2}, 1)$.

[2]

[8]

The shaded region is enclosed by the curve, the line y=1 and the y-axis.

(b) Use integration to show that the area of the shaded region is $2(\sqrt{2}-1)$.

Total: 10

	000
	5

6. Figure below shows a cube.

The points A and G are diagonally opposite corners of the cube and have position vectors $(\mathbf{i} + 8\mathbf{j} - 3\mathbf{k})$ and $(8\mathbf{i} - 9\mathbf{j} + 10\mathbf{k})$ respectively relative to a fixed origin, O.

- (a) Show that the length of one edge of the cube is 13. [4]
- (b) By finding the distance of the centre of the cube from O, prove that O is inside the cube. [7]

		Total: 1

7.

$$f(x) \equiv \frac{3}{(x-1)(x+2)}, \quad x \in \mathbb{R}, \quad x \neq -2, 1.$$

(a) Find the values of A and B for which

[3]

$$f(x) \equiv \frac{A}{x-1} + \frac{B}{x+2}.$$

(b) Find the coordinates of the stationary point on the curve y = f(x).

[7] [3]

(c) Sketch the curve y = f(x).

Total: 13

<i>ii</i> (

Last updated: July 14, 2025

8. A hot oven is turned off and allowed to cool with the door shut.

Let θ be the excess temperature inside the oven over the temperature of the air outside the oven. The rate at which θ decreases is proportional to θ .

(a) By forming and solving a differential equation, show that

[5]

$$\theta = Ae^{-kt},$$

where t is the time in minutes after the oven is switched off and A and k are constants.

The temperature inside the oven is 220° C when it is turned off. After 20 minutes the temperature inside the oven is 140° C.

Assuming that the temperature outside the oven remains constant at 20° C as the oven cools,

(b) find the value of A and the value of k correct to 3 significant figures,

[5]

[3]

(c) find to the nearest minute, how much longer it takes for the temperature inside the oven to fall to 60° C.

Total: 13

Last updated: July 14, 2025

