## Solomon Practice Paper

Pure Mathematics 3B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 5      |       |
| 2        | 7      |       |
| 3        | 9      |       |
| 4        | 9      |       |
| 5        | 10     |       |
| 6        | 10     |       |
| 7        | 12     |       |
| 8        | 13     |       |
| Total:   | 75     |       |

## How I can achieve better:

•

•

•





[5]

| 1. Given t | hat |
|------------|-----|
|            |     |

$$\frac{3x^2 + 5x + 13}{(x^2 + 2)(x - 3)} \equiv \frac{Ax + B}{x^2 + 2} + \frac{C}{x - 3}$$



find the values of the constants A, B and C.

| 2. | (a) | Find | $\int 6x e^{3x} dx$ |
|----|-----|------|---------------------|
|----|-----|------|---------------------|

[4]

(b) Find the general solution of the differential equation

[3]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x\mathrm{e}^{3x+y}.$$



| 3. | . Air is pumped into a balloon such that its volume increases at the rate of 75 cm <sup>3</sup> per second. It is assumed that the balloon is spherical at all times. |                                                                                                    |                                                    |          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------|----------|
|    | (a) Find, in terms of a is 5 cm.                                                                                                                                      | $\pi$ , the rate at which the radius of                                                            | the balloon is increasing when the radius          | [4]      |
|    |                                                                                                                                                                       | closen was initially empty, show the easing at the rate of $\frac{1}{12}\pi^{-\frac{1}{3}}$ cm per | hat one minute after the pumping begins er second. | [5]      |
|    |                                                                                                                                                                       |                                                                                                    |                                                    | Total: 9 |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |
|    |                                                                                                                                                                       |                                                                                                    |                                                    |          |



4. (a) Given that |x| < 1, express  $(1+x)^{-\frac{1}{2}}$  as a series in ascending powers of x, as far as the term in  $x^3$ . You should simplify the coefficients in your series.

[4]

(b) Hence, express

[5]

$$\frac{8x}{\sqrt{4-x}}$$

as a series in ascending powers of x, as far as the term in  $x^3$ , and state the set of values of x for which your series is valid.

| 700 |
|-----|
|     |
|     |

5. Figure shows part of the curves  $y = \cos(x)$  and  $y = \sin(2x)$  for x > 0.



The curves intersect at the points A and B.

(a) Find the coordinates of A and B.

[5]

[5]

(b) Show that the area of the shaded region bounded by the two curves and the x-axis is  $\frac{3}{4}$ .



| 6. | (a) | Write down in cartesian form the equation of a circle with centre $(-4,3)$ and a radius of 5           | . [2]     |
|----|-----|--------------------------------------------------------------------------------------------------------|-----------|
|    | (b) | Find, in the form $ax + by + c = 0$ , the equation of the normal to the circle at the point $(-1,7)$ . | t [8]     |
|    |     |                                                                                                        | Total: 10 |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |
|    |     |                                                                                                        |           |

- 7. The line  $l_1$  passes through the points with position vectors  $(6\mathbf{i} + \mathbf{j} + \mathbf{k})$  and  $(12\mathbf{i} + \mathbf{j} 11\mathbf{k})$  relative to a fixed origin, O.
  - (a) Find an equation of the line  $l_1$  in vector form.

[3]

The line  $l_2$  has the equation

$$\mathbf{r} = 4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k} + \mu(2\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}).$$

(b) Show that the lines  $l_1$  and  $l_2$  intersect and find the position vector of their point of intersection, P.

[5]

The line  $l_3$  is perpendicular to  $l_1$  and intersects lines  $l_1$  and  $l_2$  at Q and R respectively.

(c) Find in degrees, correct to 1 decimal place, the size of angle PRQ.

Total: 12

[4]

Last updated: July 14, 2025



8. The curve C has parametric equations

$$x = \frac{3}{t}$$
, and  $y = 2t^2$ ,  $t \neq 0$ .

(a) Find  $\frac{\mathrm{d}y}{\mathrm{d}x}$  in terms of t.

[3]

The point A on C has parameter t = 1.

(b) Show that the equation of the tangent to C at the point A is

[4]

$$4x + 3y - 18 = 0.$$

Last updated: July 14, 2025

The tangent to C at the point A meets the curve again at the point B.

(c) Find the coordinates of B.

[6]

