Solomon Practice Paper

Pure Mathematics 3A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

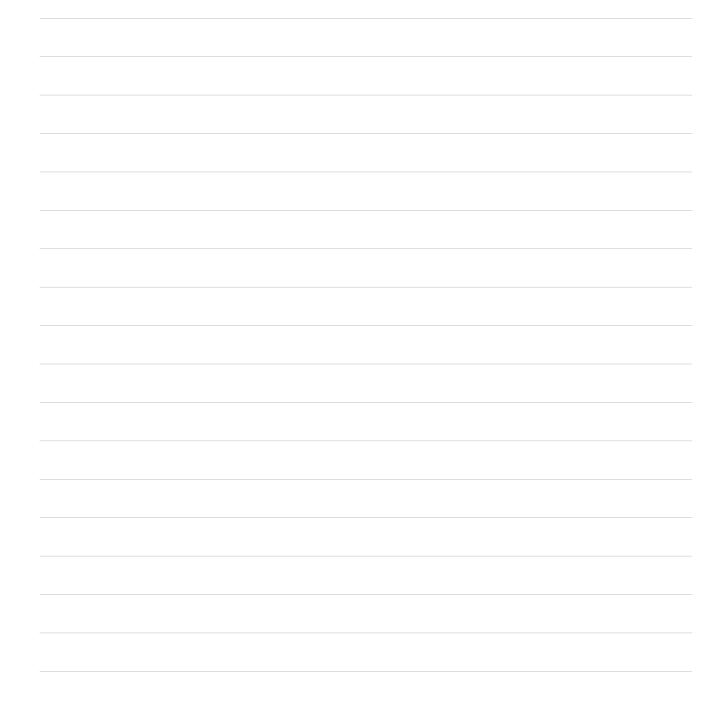
Question	Points	Score
1	6	
2	7	
3	8	
4	8	
5	9	
6	11	
7	13	
8	13	
Total:	75	

How I can achieve better:

•

•

•


1.	Α	${\rm curve}$	has	the	equation	y =	$x^2 e^{3x}$	

(a)	Find	and	simplify	an	expression	for	$\frac{\mathrm{d}y}{\mathrm{d}x}$
-----	------	-----	----------	----	------------	-----	-----------------------------------

[3]

(b) Find the coordinates of any stationary points on the curve.

[3] Total: 6

2.

$$f(x) \equiv x^3 + ax + 2.$$

Given that the remainder when f(x) is divided by (x+2) is the same as the remainder when f(x) is divided by (x-3),

(a) find the value of a,

[4]

[3]

(b) find as an exact fraction the remainder when f(x) is divided by (2x-5).

Total: 7

3.	(a)	Expand $(1+2x)^{\frac{1}{2}}$ in ascending powers of x as far as the term in x^3 , simplifying each coefficient.	[4]
	(b)	State the set of values of x for which your series is valid.	[1]
	(c)	Use your series with a suitable value of x to estimate the value of $\sqrt{1.02}$ correct to 6 significant figures.	[3]
			Total: 8

4.

$$f(x) \equiv \frac{5}{(3x-2)(x+1)}.$$

(a) Express f(x) in the form

$$\frac{A}{3x-2} + \frac{B}{x+1}.$$

(b) Show that

\int^4	$f(x) dx = \ln$	$\left(\frac{3}{-}\right)$
$\int_{2}^{}$	I(x) dx = In	$(\bar{2})$

[5]

[3]

Total: 8

www.CasperYC.club Last updated: July 14, 2025

5. The circle C has the equation

$$x^2 + y^2 - 4x - 10y + 20 = 0.$$

- (a) Find the coordinates of the centre of C and write down its radius.
- [5] [4]

Total: 9

(b) Find an equation for the smallest circle that touches both the circle C and the x -axis.						

6. A curve has the equation

$$2x^2y - 6y + x^3 = 2.$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 + 4xy}{6 - 2x^2}.$$

The point A with coordinates (2, k) lies on the curve.

(b) Find the value of k.

[2]

[5]

(c) Show that the normal to the curve at A has the equation

[4]

$$x + 6y + 16 = 0$$
.

Total: 11

Last updated: July 14, 2025

7. (a) Using the substitution $u = \sin(x)$, or otherwise, find

[3]

$$\int \cos(x)\sin^2(x)\,\mathrm{d}x.$$

(b) Hence, find

 $\int \cos^3(x) \, \mathrm{d}x.$

(c) Given that $y = \frac{\pi}{4}$ when $x = \frac{\pi}{6}$, solve the differential equation

[6]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos^2(y)\cos^3(x).$$

Total: 13

Last updated: July 14, 2025

[3]

[3]

[2]

[5]

13

8.	Relative to a fixed origin, O , the points A and B have position vectors $(7\mathbf{i} - 7\mathbf{j} + 5\mathbf{k})$ and $(\mathbf{i} - 6\mathbf{j} + 12\mathbf{k})$ respectively.	d
	(a) Find, in vector form, an equation of the line l which passes through A and B .	
	Given that the point C has position vector $(-3\mathbf{i} + 12\mathbf{j} + 10\mathbf{k})$ and that M is the mid-point of BC ,	of
	(b) find the position vector of the point M .	
	Given also that $ABMD$ is a rhombus,	
	(c) show that the position vector of the point D is $(5\mathbf{i} + 2\mathbf{j} + 4\mathbf{k})$,	
	(d) find the area of $ABMD$ in the form $k\sqrt{2}$ where k is an integer.	
		Total
		00