Solomon Practice Paper

Pure Mathematics 2L

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	7	
4	9	
5	9	
6	12	
7	12	
8	15	
Total:	75	

How I can achieve better:

•

•

•

- 1. (a) Sketch the following graphs on separate diagrams, labelling the coordinates of any points where each graph meets the coordinate axes.
- [4]

i.
$$y = |x + 1|$$
.

- ii. y = |x| + 1.
- (b) Hence, write down the set of values of x for which [1]

$$|x| + 1 > |x + 1|$$
.

Total: 5

2.	(a)	Prove by counter-example that $a > b$ does not imply that $(a+1)^2 > (b+1)^2$ for all integers a and b .	[2]
	(b)	Use proof by contradiction to show that $(4n-3)$ is odd for all positive integers n .	[4]
			Total: 6

3. (a) Expand $\left(1+\frac{1}{4}x\right)^8$ in ascending powers of x as far as the term in x^3 , simplifying the coefficient in each term.

(b) Use your series to estimate the value of $\left(\frac{41}{40}\right)^8$, correct to 4 significant figures. [3]

Total: 7

of the value of $\left(\frac{1}{40}\right)$, correct to 4 significant figures.	

4.	(a)	Show	that	for	all	values	of x ,	where x	is	measured	${\rm in}$	degrees
----	-----	------	------	-----	-----	--------	----------	-----------	----	----------	------------	---------

[5]

$$\cos(x + 60^{\circ}) - \sqrt{3}\sin(x - 60^{\circ}) \equiv 2\cos(x) - \sqrt{3}\sin(x).$$

(b) Hence, find the values of x in the interval $-180^{\circ} \le x \le 180^{\circ}$, for which

[4]

$$\cos(x + 60^\circ) - \sqrt{3}\sin(x - 60^\circ) = 0,$$

giving your answers to an appropriate degree of accuracy.

Total: 9

700
(\omega)

5.

$$f(x) \equiv 2 - \frac{3}{x}, \quad x \in \mathbb{R}, \quad x \neq 0.$$

(a) Find and simplify an expression for ff(x) and state its domain.

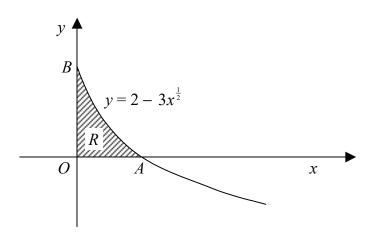
[4]

[5]

(b) Show that $fff(x) = \frac{4x+3}{6-x}$.

Total: 9

6. Figure shows the curve with equation $y = 2 - 3x^{\frac{1}{2}}$.



The curve meets the x-axis at the point A and the y-axis at the point B.

(a) Find the coordinates of the points A and B.

[3]

[7]

The shaded region, R, is bounded by the curve and the positive coordinate axes.

(b) Show that the volume generated when R is rotated through 360° about the x-axis is $\frac{8}{27}\pi$.

(c) State, with a reason, whether the volume generated when R is rotated through 360° about the y-axis is more, less or the same as your answer to part (b).

[2]

[5]

7.

$$f(x) \equiv \arccos(x), \quad x \in \mathbb{R}, \quad |x| \le 1.$$

- (a) State the exact value of x for which $f(x) = \frac{3}{4}\pi$.
- (b) Sketch the curve y = f(x) and state its range. [3]
- (c) Use the trapezium rule with 3 equally spaced ordinates to estimate the area enclosed by the curve y = f(x) and the positive coordinate axes. Give your answer in the form $k\pi$ where k is an exact fraction.
- (d) Explain, with reference to the curve's symmetry, why the total area enclosed by the curve, the x-axis and the ordinate x = -1 is π .

Total: 12

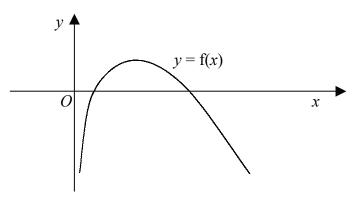
[5]

[5]

[2]

[3]

8. Figure shows the curve y = f(x) where $f(x) \equiv \ln(5x) - 2x^2, x > 0$.



(a) Show that the maximum value of f(x) is $\ln\left(\frac{5}{2}\right) - \frac{1}{2}$.

The point A lies on the curve and has x-coordinate $\frac{1}{5}$.

- (b) Show that the equation of the tangent to the curve at A is 105x 25y 23 = 0.
- (c) Show that that the equation f(x) = 0 can be rearranged to give $x = \frac{1}{4} \left(e^{2x^2} x \right)$.
- (d) Use the iteration formula $x_{n+1} = \frac{1}{4} \left(e^{2x_n^2} x \right)$

with $x_0 = 0.25$ to find x_1, x_2 and x_3 .

Hence, write down one root of the equation f(x) = 0 correct to an appropriate degree of accuracy.

Total: 15

