Solomon Practice Paper

Pure Mathematics 2J

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	8	
3	8	
4	10	
5	11	
6	11	
7	11	
8	12	
Total:	75	

How I can achieve better:

•

•

•

[4]

2.	(a) E	By letting $p =$	$\log_a(x)$ and $q =$	$= \log_a(y)$, or	otherwise,	prove that

[4]

$$\log_a(xy) \equiv \log_a(x) + \log_a(y).$$

[4]

(b) Find integers
$$A$$
 and B such that

$\ln($	(48)) + 1	$\ln($	(108)	=	A	ln(í	2)	+	B	ln((3)	١.
--------	------	-------	--------	-------	---	---	------	----	---	---	-----	-----	----

3.	(a) Express	$\left(x^{\frac{1}{2}} - 2x^{-\frac{3}{2}}\right)$) ² in the form $px + qx^{-1} + rx^{-3}$.
----	-------------	--	---

[3] [5]

(b) Show that

$$\int_{2}^{4} \left(x^{\frac{1}{2}} - 2x^{-\frac{3}{2}} \right)^{2} dx = \frac{51}{8} - 4\ln(2).$$

4 ((a.)	Find	the	values	of θ	in	the	interval	0	<	θ	<	2π	for	which
T . (α	rmu	UIIC	varues	$o_1 o$	111	ULIC	mout var	U	\rightarrow	U	\rightarrow	∠n,	101	WILL

[5]

$$2\tan^2(\theta) + \sec^2(\theta) = 2,$$

 $\sin(3x) = \sin(2x).$

giving your answers in terms of π .

[5]

(b) Find the values of
$$x$$
 in the interval $0 \le x \le 180^{\circ}$, for which

Total: 10

200

- 5. Given that a > 0,
 - (a) sketch on the same set of coordinate axes the graphs of $y = \frac{1}{2}(x+a)$ and y = |2x-a|, [5] labelling the coordinates of any points where each graph meets the coordinate axes,
 - (b) find, in terms of a, the coordinates of any points where the two graphs intersect. [6]

[4]

6.	(a) Expand $(4+2x)^5$ as a series in ascending powers of x, simplifying each coefficient.	[4]
	Hence, find	
	(b) the coefficient of y^4 in the expansion of $(4 + \frac{1}{5}y)^5$ as an exact fraction,	[3]
	(c) the coefficient of z^6 in the expansion of $(2+\sqrt{2}z)^5(2-\sqrt{2}z)^5$.	[4]
		Total: 11

7.

$$f(x) \equiv x^4 - 5x + 3.$$

(a) Show that one root of the equation f(x) = 0 lies in the interval (0.6, 0.7).

[2] [3]

(b) Using the iteration formula

$$x_{n+1} = 0.2 \left(x_n^4 + 3 \right),\,$$

with a starting value of $x_1 = 0.65$, find this root correct to 3 significant figures.

(c) Show that the equation f(x) = 0 can be rewritten as

[2]

$$x = \pm \sqrt{\frac{ax+b}{x^2}}$$

where a and b are integers to be found.

(d) Hence, use the iteration formula

[2]

$$x_{n+1} = \pm \sqrt{\frac{a_n x + b}{x_n^2}},$$

together with your values of a and b and with $x_1 = 1.5$ to find x_2, x_3 and x_4 correct to 6 significant figures.

(e) Considering only your values of x_2, x_3 and x_4 , explain why it is reasonable to give a second root of the equation as 1.43 correct to 3 significant figures.

Total: 11

		70
		()

Last updated: July 14, 2025

8. Figure shows the straight line l and the curve y = f(x).

The line and curve intersect at the points $P(1, \ln(2))$ and $Q(3, \ln(8))$.

(a) Find in its simplest form the equation of the line l.

[4]

Given that $f(x) \equiv \ln(ax + b)$,

(b) find the values of a and b,

[5] [3]

(c) hence, find an expression for $f^{-1}(x)$.

