Solomon Practice Paper

Pure Mathematics 2I

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	9	
4	9	
5	11	
6	11	
7	12	
8	13	
Total:	75	

How I can achieve better:

•

•

•

[5]

1.	Express				
			2	3x	5
			<u> </u>	$+{m^2}$	

Last updated: July 14, 2025

[3]

2.	(a) Find		[2
		ſ	Ĺ

 $\int e^x + 2x + 1 dx.$ (b) Evaluate $\int_{-\infty}^{2} e^x + 2x + 1 dx$

giving your answer in terms of e.

giving your answer in terms or c.	
	Total:

3. Figure shows part of the curve y = f(x) which meets the x-axis at the origin, O, and at the point with coordinates (4,0). The curve has a maximum point with coordinates (2,3).

Showing the coordinates of any turning points and any points where each curve meets the x-axis, sketch on separate diagrams graphs of

(a)
$$y = |f(x)|,$$
 [2]

(b)
$$y = f(\frac{1}{2}x),$$
 [3]

(c)
$$y = f(|x|)$$
.

Last updated: July 14, 2025

Total: 9

[4]

4. Figure shows part of the curve $y = e^{3x} - 1$.

(a) Write the equation of the curve in the form x = f(y).

[3]

[6]

The shaded region is enclosed by the curve, the y-axis and the line y = 3.

(b) Show that using the trapezium rule with 3 intervals of equal width gives an estimate of $\frac{1}{3}(2\ln(2) + \ln(3))$ for the area of the shaded region.

Total: 9

500
1001

5. A sequence is defined by the following recurrence relation:

$$u_{n+1} = \frac{2}{u_n} - k, \quad n \ge 1, \quad u_1 = \frac{1}{2}.$$

(a) Find expressions in terms of k for u_2 and u_3 . [3]

Given that $u_3 = 7u_2$,

(b) find the two possible values of k. [5]

Given also that k is an integer,

(c) show that $u_4 = -\frac{37}{7}$.

[3]

Total: 11

	000
Last updated: July 14, 2025	
Last apacita. Saly 11, 2020	

[6]

6. (a) Find the values of R and α , where x is measured in degrees, R>0, and $0<\alpha<90^\circ$, for which

$$\cos(x) - \sqrt{3}\sin(x) \equiv R\cos(x + \alpha).$$

(b) Hence, find the values of x in the interval $0 \le x \le 360^{\circ}$, for which

$$\cos(x) - \sqrt{3}\sin(x) \equiv 2\cos(x + 30^\circ).$$

Total: 12

7. The functions f and g are defined by

$$\begin{aligned} \mathbf{f} \colon x & \mapsto & x^2 - 4, & x \in \mathbb{R}, \\ \mathbf{g} \colon x & \mapsto & 2x + 1, & x \in \mathbb{R}. \end{aligned}$$

- (a) State the range of f. [1]
- (b) Define fg as simply as possible. [3]
- (c) Solve the equation fg(x) = 0. [2]
- (d) Prove that there are no real values of x for which fg(x) = gf(x). [6]

Last updated: July 14, 2025

8. Figure shows the curve with equation $y = e^x - 3x$

which meets the y-axis at the point A.

(a) Find an equation of the normal to the curve at A.

[7]

The point B lies on the curve and has coordinates $(\ln(5), 5-3\ln(5))$.

(b) Find an equation of the normal to the curve at B.

[4]

[2]

The normals to the curve at A and B intersect at the point C.

(c) Show that the x-coordinate of C is $\left(4 - \frac{5}{2}\ln(5)\right)$.

Total: 13

		<i>J</i> 00
		/00

Last updated: July 14, 2025

