Solomon Practice Paper

Pure Mathematics 2H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	7	
4	9	
5	10	
6	12	
7	12	
8	13	
Total:	75	

How I can achieve better:

•

•

•

1. Find, to an appropriate degree of accuracy, the values of x and y for which

(a)	5^x	=	10	

[3]

(b) $\log_2(4^{2y}) = \log_3(27^{y+1})$.

[3] Total: 6

[6]

2. Us	e the trapezium	rule with a	5 equally	spaced	${\rm ordinates}$	to estimate	the	value	of
-------	-----------------	-------------	-----------	--------	-------------------	-------------	-----	-------	----

$$\int_{-2}^{2} e^{\frac{1}{2}x+1} \, \mathrm{d}x,$$

giving your answer correct to 3 significant figures.

Last updated: July 14, 2025

Total: 7

3.	(a)	[4]
	$f(x) \equiv 4x^2 - 4x + 3, x \in \mathbb{R}.$	
	Prove that $ f(x) = f(x)$ for all values of x .	

(b) $g(x) \equiv x^2 + 6x + 4, \quad x \in \mathbb{R}.$

Prove that there are no real solutions to the equation g(|x|) = 0.

[6]

4. (a) Figure shows the curve y = f(x) which has a minimum point with coordinates (-6, -2). The curve meets the coordinate axes at the points (-9, 0), (-3, 0) and (0, 6).

Showing the coordinates of any turning points and any points where each curve meets the coordinate axes, sketch on separate diagrams graphs of

i.
$$y = f(x - 3)$$
,

ii.
$$y = 2 + \frac{1}{2}f(x)$$
.

(b) Figure shows the curve y = g(2x) which meets the coordinate axes at the points with coordinates (3,0) and (0,2).

Showing the coordinates of any points where the curve meets the coordinate axes, sketch the graph y = g(x).

Last updated: July 14, 2025

Total: 9

5.	(a)	Expand $(1+4x)^6$ in ascending powers of x as far as the term in x^3 , simplifying the coefficient in each term.	[4]
	(b)	Use your series to estimate the value of $(1.04)^6$ correct to 4 significant figures.	[3]
	(c)	Find the coefficient of x^2 in the expansion of $(2+x)(1+4x)^6$.	[3]
		J	Total: 10

6. Figure shows part of the curve with equation $y = 2x + 3\ln(x)$.

The curve crosses the x-axis at the point P with coordinates (p, 0).

(a) Show that 0.5 .

(b) Using the iteration [3] $\sqrt{x_n^{\frac{1}{2}}}$

and $x_1 = 0.5$, find the value of x_4 correct to 3 significant figures.

(c) Show that your answer to part (b) gives the value of p correct to 3 significant figures.

The point Q with coordinates (1,2) lies on the curve.

(d) Find an equation of the tangent to the curve at Q.

Total:	12

[2]

[5]

7. The function f is given by

$$f: x \mapsto 2\cos(x) + \sin(x), \quad x \in \mathbb{R}.$$

Given that f(x) can be written as $R\cos(x-\alpha)$, where x is measured in degrees, R>0 and $0\leq\alpha\leq90^\circ$,

- (a) show that $R = \sqrt{5}$ and find the value of α correct to 1 decimal place,
- (b) state the range of f(x). [1]

The function g is given by

$$g: x \mapsto \frac{8}{3+x}, \quad x \in \mathbb{R}, \quad x \neq -3.$$

(c) Find the range of gf(x), giving the minimum and maximum values in the form $a + b\sqrt{5}$. [6]

Total: 12

[5]

Last updated: July 14, 2025

Last updated: July 14, 2025

8. Figure shows the curve $y = x^2 + 1$ and the line y = 4 - 2x.

A is the point of intersection of the curve and line with a positive x-coordinate.

(a) Show that the point A has coordinates (1, 2).

[3]

The shaded region, R, is enclosed by the curve, the line and the positive coordinate axes.

(b) Show that the volume of the solid generated when R is rotated through 2π radians about the x-axis is $\frac{16}{5}\pi$.

Total: 13

