Solomon Practice Paper

Pure Mathematics 2F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	8	
4	9	
5	11	
6	11	
7	12	
8	12	
Total:	75	

How I can achieve better:

•

•

•

1.	(a) Find $\int 2x - 3e^x dx.$	[2]
	Given that $f'(x) = 2x - 3e^x$ and that the curve $y = f(x)$ meets the y-axis at the point $(0,6)$, (b) find $f(x)$.	[3] Total: 5

- 2. (a) Sketch on the same set of coordinate axes the graphs of $y = x^2 + 1$ and y = |2x 4|.
 - (b) Hence, or otherwise, solve the equation $x^2 + 1 = |2x 4|$. [4]

Total: 7

[3]

(a) Find the first three terms in the expansion of (2+kx)⁵ in ascending powers of x, simplifying each coefficient.
(b) Given that the coefficient of x² in the expansion of (1 - x)(2 + kx)⁵ is 60,
(c) find the two possible values of k.
(d) Total: 8

4.	(a)	Given	that
----	-----	-------	------

$$p = \log_2(x)$$
 and $q = \log_2(y)$,

find expressions in terms of p and q for

- i. $\log_2(x^2y)$,
- ii. $\log_2\left(\frac{\sqrt{y}}{x^3}\right)$.
- (b) Hence, or otherwise, solve the simultaneous equations

$$\log_2(x^2y) = 2$$
 and $\log_2\left(\frac{\sqrt{y}}{x^3}\right) = -11$

 Lot	a	l:	9

5. Figure shows part of the curve $y = 2 \ln(x)$.

(a) Write the equation of the curve in the form x = f(y).

[2]

[4]

The shaded region is enclosed by the curve, the positive coordinate axes and the line y=2.

(b) Use the trapezium rule with 4 intervals of equal width to estimate the area of the shaded region correct to 3 significant figures.

[5]

(c) Find the volume of the solid generated when the shaded region is rotated through 360° about the y-axis. Give your answer in terms of e and π .

Total: 11

6.

$$f(x) \equiv \sqrt{3}\sin(x) + \cos(x).$$

- (a) Express f(x) in the form $R\sin(x+\alpha)$ where x is measured in degrees and $0 < \alpha < 90^{\circ}$. [5]
- (b) State the maximum value of $(\sqrt{3}\sin(x) + \cos(x))$ and the smallest positive value of x for which f(x) takes this value.

(c) Solve the equation $f(x) = \sqrt{2}$, for x in the interval $0 \le x \le 360^{\circ}$.	[4]
--	-----

rotai:	11

[2]

7. The functions f and g are defined as follows

$$f: x \mapsto x^2 - 6x, x \in \mathbb{R},$$

 $g: x \mapsto e^x + 3, x \in \mathbb{R}.$

(a) Evaluate $g(2 \ln(3))$.

[3]

(b) Find and simplify an expression for fg(x).

[3]

(c) Prove that for all values of x, $fg(x) \equiv g(2x) - 12$.

[2]

[4]

(d) Solve the equation gf(x) = 4.

Total: 12

8. Figure shows part of the curve with equation y = f(x) where

$$f(x) \equiv kx^{\frac{3}{2}} - \frac{7}{8}\ln(4x).$$

Given that the curve passes through the point $A\left(\frac{1}{4}, \frac{1}{2}\right)$,

- (a) show that k = 4,
- (b) find f'(x),
- (c) prove that the normal to the curve at the point A passes through the origin.

[3]

[3]

[6] Total: 12

