Solomon Practice Paper

Pure Mathematics 2D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	8	
4	8	
5	10	
6	11	
7	12	
8	15	
Total:	75	

How I can achieve better:

•

•

•

1.	The	function	f	is	defined	by
т.	1110	Tunculon	1	10	acmica	\mathcal{O}_{y}

$$f(x) \equiv \log_3(x), \quad x \in \mathbb{R}, \quad x > 0.$$

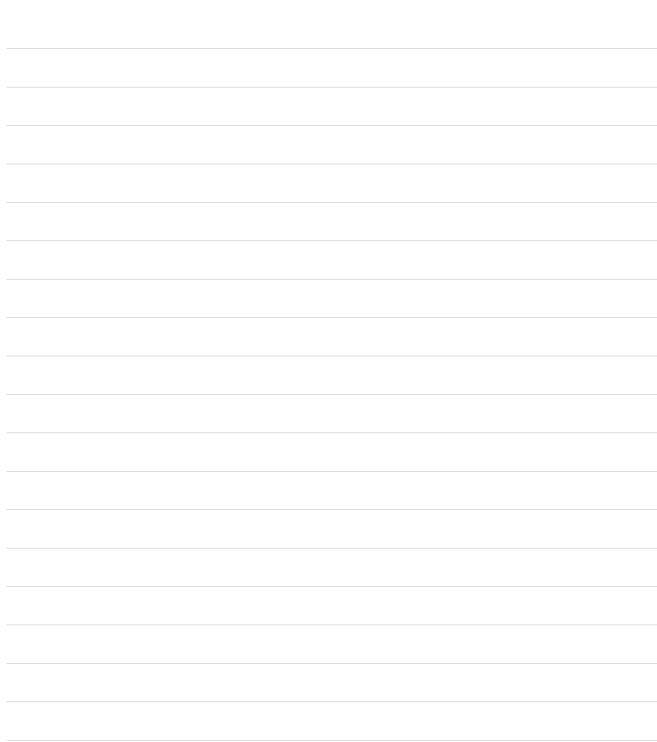
(a) Evaluate f(27).

[2]
[-]

(b) Solve the equation $f(3^{x+4}) = 2x$.

	[3]

Total: 5



2. A sequence is defined by the recurrence relation

$$u_{n+1} = 4 + \frac{1}{2}u_n, \quad n \ge 1, \quad u_1 = 72.$$

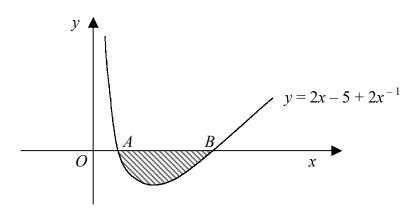
(a) Find the value of u_4 .

[3]

(b) Using the fact that $u_{10} = \frac{65}{8}$, find the value of u_9 as an exact fraction.

[3] Total: 6

3. Figure shows part of the curve with equation $y = 2x - 5 + 2x^{-1}$, for x > 0.



The curve crosses the x-axis at the points A and B.

(a) Find the coordinates of the points A and B.

[3]

[5]

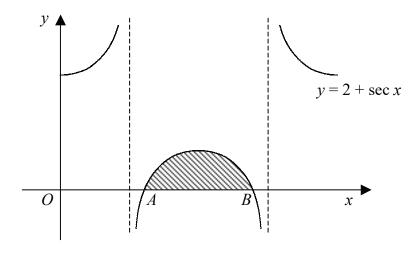
(b) Show that the *mathematical* area of the shaded region enclosed by the curve and the x-axis is given by $\frac{1}{4}(16\ln(2)-15)$.

Total: 8

Last updated: July 14, 2025

1.	(a)	Prove by counter-example that $(3^n + 2)$ is not prime for all positive integers n .	[3]
	(b)	Use proof by contradiction to show that there are no integers p and q , such that $\frac{p}{q} = \sqrt{2}$, where p and q are co-prime.	[5]
			Total: 8

5. Figure shows the curve $y = 2 + \sec(x)$ for x in the interval $[0, 2\pi]$.



The curve meets the x-axis at the points A and B.

(a) Find the coordinates of the points A and B.

[4]

The shaded region is enclosed by the curve and the x-axis between the points A and B.

(b) Show that estimating the area of the shaded region using the trapezium rule with 5 equally spaced ordinates gives a value of $\frac{1}{18}\pi(15-4\sqrt{3})$.

Total:	10
--------	----

[3]

[2]

[6]

Total: 11

6.

$$f(x) \equiv 3x^2 - 18x + 5, \quad x \in \mathbb{R}, \quad x > 4.$$

- (a) Express f(x) in the form $A(x+B)^2 + C$.
- (b) Find the range of f(x).
- (c) Define $f^{-1}(x)$, stating its domain clearly.

Last updated: July 14, 2025

7. (a) Using the half-angle formulae, or otherwise, prove that for all values of x

[5]

$$\frac{1 + \cos(x)}{1 - \cos(x)} \equiv \cot^2\left(\frac{x}{2}\right).$$

(b) Hence, find the values of x in the interval $0 \le x \le 2\pi$ for which

[7]

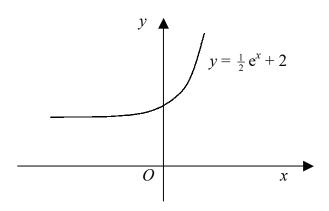
$$\frac{1+\cos(x)}{1-\cos(x)} = 6\csc\left(\frac{x}{2}\right) - 10$$

giving your answers correct to an appropriate degree of accuracy.

Total: 12

700

8. Figure shows part of the curve with equation $y = \frac{1}{2}e^x + 2$ which passes through the point A with coordinates $(\ln(4), 4)$.



(a) Show that the equation of the tangent to the curve at A is $y = 2x + 4 - 4\ln(2)$.

The tangent to the curve at A meets the x-axis at the point B.

(b) Find the coordinates of the point B.

The normal to the curve at A meets the x-axis at the point C.

- (c) Find the coordinates of the point C.
- (d) Show that the area of triangle ABC is 20.

Total: 15

[4]

[3]

[5]

[3]

