Solomon Practice Paper

Pure Mathematics 2C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	6	
4	8	
5	10	
6	12	
7	13	
8	14	
Total:	75	

How I can achieve better:

•

•

•

1.	(a)	Solve the equation	[3]
		$\ln(2x+1) = 3$	
		giving your answer in terms of e.	
	(b)	Given that	[3]
		$2^x = 5^y,$	
		show that $y = kx$ where k is a constant that you should find correct to an appropriate degree of accuracy.	
			Total: 6

2.	(a)	Use	the	identity
----	-----	-----	-----	----------

$$\sin(A+B) \equiv \sin(A)\cos(B) + \cos(A)\sin(B)$$

to prove that

$$\sin(2A) \equiv 2\sin(A)\cos(A).$$

(b) Hence, or otherwise, use the fact that

$$\sin(15^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

to find the value of $\cos(15^{\circ})$ in exact form with a rational denominator.

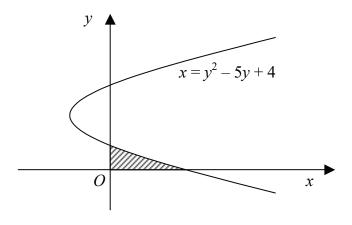
Total: 6

100
60

[6]

3.	Express	

$$\frac{5x^2 - 11x + 9}{x^2 + 3x - 10} + \frac{3 - 2x}{x - 2}$$


$\frac{1}{x^2 + 3x - 10} + \frac{1}{x - 2}$
as a single fraction in its simplest form.

The coefficient of x^2 in the expansion of $(1+3x)^n$ is 252.	
Given that n is a positive integer,	
(a) find the value of n ,	[5]
(b) show that the coefficient of x^3 is 1512.	[3]
	Total: 8

5. Figure shows the curve $x = y^2 - 5y + 4$.

(a) Express x^2 in descending powers of y.

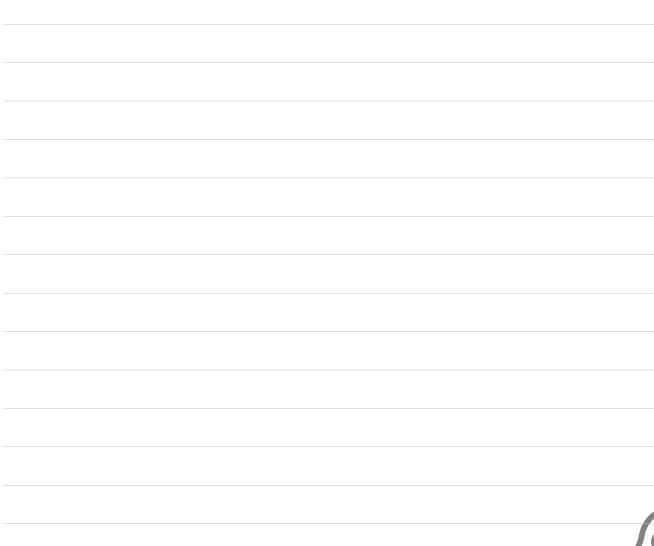
[3]

(b) Find $\int x^2 dy$.

[3]

[4]

- (c) Show that the volume generated when the shaded region, bounded by the curve and the positive coordinate axes, is rotated through 2π radians about the y-axis is $\frac{47\pi}{10}$.
 - Total: 10


6. The functions f and g are defined by

$$f: x \mapsto x^2 - 2, x \in \mathbb{R},$$

 $g: x \mapsto e^{\frac{3}{2}x} \quad x \in \mathbb{R}.$

- (a) State the range of g. [1]
- (b) Define fg as simply as possible. [3]
- (c) Find, correct to 2 decimal places, the value of x for which fg(x) = 5. [3]
- (d) Show that the only value of x for which g(x) = fg(x) is $\frac{2}{3} \ln(2)$.

Total	: 1	2

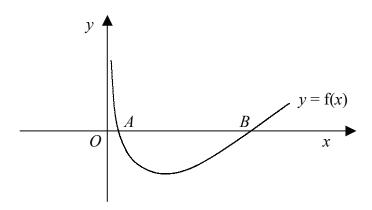
[5]

Last updated: July 14, 2025

[7]

7.	(a) Prove that		[6]
		$\cot^2(x) - \tan^2(x) \equiv 4\cot(2x)\csc(2x).$	

(b) Hence, find in terms of π the values of x in the interval $0 \le x \le \pi$ for which


$$\cot^2(x) - \tan^2(x) = 8\cot(2x).$$

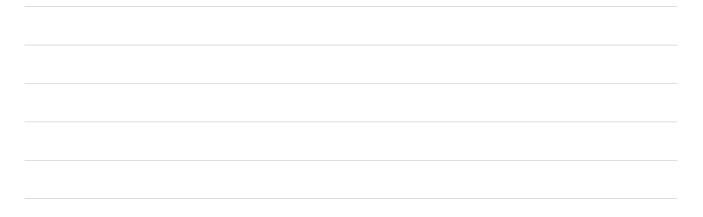
Total: 1

8. Figure shows part of the curve with equation y = f(x), where

$$f(x) \equiv x - 3\ln(2x), \quad x \in \mathbb{R}, \quad x > 0.$$

The curve crosses the x-axis at the points A and B.

- (a) Show that the x-coordinate of the point A lies in the interval (0.6, 0.7).
- (b) Find the value of N such that the x-coordinate of the point B lies in the interval (N, N+1). [4]


The line y = x meets the curve at the point C.

- (c) Find the coordinates of the point C.
- (d) Show that the equation of the tangent to the curve at C is y = 3 5x. [5]

Total: 14

[2]

[3]

