Solomon Practice Paper

Pure Mathematics 2B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	10	
6	10	
7	11	
8	14	
Total:	75	

How I can achieve better:

•

•

•

Total: 6

1.	(a) Sketch the graph of $y = 3x + 2 $ showing the coordinates of any points where the graph	[3
	meets the coordinate axes.	

(b) Solve the equation $ 3x $	x+2 = 2 - x	[3]

2	(a)	Prove	using	the	laws	of	indices	that	for	all	values	of x
	(~)	1 10,0	401110	OII	100110	O 1	marcos	CIICC	101	COLL	, cor crop	OI W

[4]

$$\log_a(x^k) \equiv k \log_a(x).$$

[3]

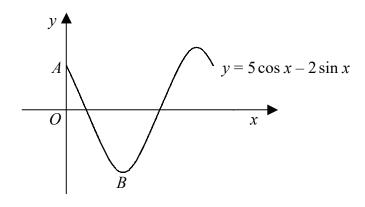
(b) Express

$$\ln(9) - 3\ln\sqrt{3} + \ln(81)$$

Total: 7

in t	the f	orm	$k \ln$	(3),	where	k	is	an	exact	fractio	n
------	-------	-----	---------	------	-------	---	----	----	-------	---------	---

3. Figure shows the curve $y = 5\cos(x) - 2\sin(x)$ for $0 \le x \le 360^{\circ}$.



(a) Find the values of R and α , correct to 3 significant figures, for which

[5]

$$5\cos(x) - 2\sin(x) \equiv R\cos(x + \alpha)$$

where x is measured in degrees and $0 < \alpha < 90^{\circ}$.

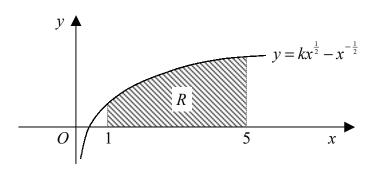
(b) Find the coordinates of

[3]

- i. the point A, where the curve meets the y-axis,
- ii. the point B, the first minimum on the curve for x > 0.

Total: 8

4. Figure shows part of the curve $y = kx^{\frac{1}{2}} - x^{-\frac{1}{2}}$.



Given that the point with coordinates $(3, \frac{5}{3}\sqrt{3})$ lies on the curve,

(a) show that k=2.

[3]

[6]

The shaded region, R, is bounded by the curve, the x-axis and the ordinates x = 1 and x = 5.

(b) Find the volume generated when R is rotated through 360° about the x-axis, giving your answer in the form $\pi(a + b \ln(5))$.

Total: 9

5. The function f is given by

$$f: x \mapsto \frac{x}{x+3}, \quad x \in \mathbb{R}, \quad x \neq -3.$$

(a) Define $f^{-1}(x)$, stating its domain clearly.

[5]

The function g is given by

$$g: x \mapsto \frac{4}{x}, \quad x \in \mathbb{R}, \quad x \neq 0.$$

(b) Express $fg(\sqrt{2})$ in the form $a + b\sqrt{2}$, where a and b are integers.

Total: 10

[5]

/00

6. A sequence is defined as follows

$$u_{n+1} = ku_n - 2, \quad n \ge 1, \quad u_1 = 3.$$

(a) Find expressions in terms of k for u_2 and u_3 .

[3]

Given that $u_2 + u_3 = 0$,

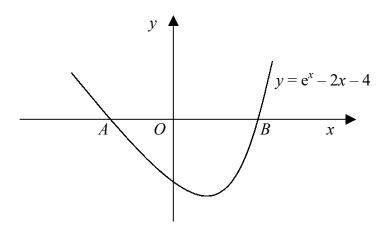
(b) show that one possible value of k is 1 and find the other possible value,

[4] [3]

(c) find the value of u_4 corresponding to each possible value of k.

Total: 10

7. Figure shows part of the curve with equation $y = e^x - 2x - 4$.



 $x_{n+1} = \ln(px_n + q)$

(a) Find in exact form the coordinates of the turning point of the curve.

[5]

The curve intersects the x-axis at the points A(a,0) and B(b,0) where a < b.

(b) Show that -2 < a < -1.

[2]

(c) Use an iteration of the form

		[4]

with a starting value of $x_0 = 2$ to find b correct to 3 significant figures.

Total: 11

8.

$$f(x) \equiv 2x^2 + 4x + \ln(x), \quad x \in \mathbb{R}, \quad x > 0.$$

- (a) Sketch the curves $y = 4x + 2x^2$ and $y = -\ln(x)$, for x > 0, on the same diagram. Hence show that the equation f(x) = 0 has exactly one solution.
 - [6]

[3]

[5]

(b) Express
$$f'(x)$$
 in the form

$$\frac{(ax+b)^2}{x},$$

and hence prove that f(x) is increasing throughout its domain.

(c) Find f''(x) and hence find the set of values of x for which the gradient of f(x) is increasing.

Total: 14

