Solomon Practice Paper

Pure Mathematics 2A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	7	
4	8	
5	10	
6	11	
7	12	
8	15	
Total:	75	

How I can achieve better:

•

•

•

[5]

$$2^{2x} - 2^x - 6 = 0$$

giving any answers correct to 3 significant figures.	

2.	(a)	Expand $(1-3x)^6$ in ascending powers of x as far as the term in x^3 , simplifying the coefficient in each term.	[4]
	(b)	Using your series, together with a suitable value of x which you should state, estimate the value of $(0.997)^6$ correct to 6 significant figures.	[3]
			Total: 7

Last updated: July 14, 2025

3	(a)	Show t	hat ($(x \perp 2)$	ie a	factor	$\circ f$	$(x^3 -$	$2x^{2}$	$5x \perp$	- 6)
J. ((a)	SHOW (mat (x + z	1 is a	ractor	OI	$(x^{2} -$	zx^{-}	ox +	- 0)

[2]

[5]

(b) Hence, simplify the expression

$$\frac{x^3 - 2x^2 - 5x + 6}{2x^2 - 5x - 3}$$

Tota	1.	7

4. Figure shows part of the curve y = f(x) which passes through the origin, O.

The curve has a maximum point with coordinates (3,6) and a minimum point with coordinates (6,2).

Showing the coordinates of any stationary points, sketch on separate diagrams the curves

(a)
$$y = f(x+3)$$
,

(b)
$$y = f(2x)$$
, [2]

(c)
$$y = f(|x|)$$
.

Total: 8

[2]

[4]

5.

$$f(x) \equiv 1 + \frac{3}{x}, \quad x \in \mathbb{R}, \quad x \neq 0.$$

- (a) Show that $ff(x) = \frac{4x+3}{x+3}$. [4]
- (b) Prove that the equation f(x) = kx + 2k will only have real solutions if $4k^2 + 8k + 1 \ge 0$. [4]
- (c) Prove by counter-example that the equation f(x) = kx + 2k does not have real solutions for all values of k.

		Tota

Last updated: July 14, 2025

6	(a.)	Prove	that	for	all	values	$\circ f$	1
U. I	(a)	TIOVE	unau	101	an	varues	ΟI	J

[5]

$$2\tan(x) - \sin(2x) \equiv 2\sin^2(x)\tan(x).$$

(b) Hence find the values of x in the interval $0 \le x \le 360^{\circ}$, for which

[6]

$$2\tan(x) - \sin(2x) = \sin^2(x),$$

Total: 11

giving yo	our ans	swers to	an	appropriate	degree	of	accuracy.

Last updated: July 14, 2025

7. Figure shows part of the curve with equation $y = 2e^x - 1$.

The shaded region, R, is enclosed by the curve, the positive coordinate axes and the ordinate x = 3.

- (a) Use the trapezium rule with 4 equally spaced ordinates to estimate the area of R, giving your answer in terms of e. [5]
- (b) Use integration to show that the exact area of R is $2e^3 5$. [4]
- (c) Find correct to 2 significant figures the percentage error in your estimate in part (a). [3]

Last updated: July 14, 2025

Total: 12

8. Figure shows part of the curve $y = \ln(x) + 5 - 3x, x > 0$, and the normal to the curve at the point A.

The x-coordinate of the point A is 1.

(a) Find the equation of the normal to the curve at A in the form ax + by + c = 0.

rve is [3]

Total: 15

[7]

(b) Show that the x-coordinate of the point B, where the normal again intersects the curve is given by a solution of the equation $2\ln(x) + 7 - 7x = 0$.

(c) Using an iteration of the form $x_{n+1} = e^{k(x_n - 1)},$ [5]

with a starting value of $x_1 = 0.1$, find the x-coordinate of the point B giving your answer correct to 3 decimal places.

