Solomon Practice Paper

Pure Mathematics 1K

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	8	
4	9	
5	9	
6	12	
7	12	
8	15	
Total:	75	

How I can achieve better:

•

•

•

1.	(a) Express each of the following in the form 3^p , where p is a function of x : i. 9^{2x-3}	[3]
	ii. 27^{x+2}	
	(b) Hence, or otherwise, solve the equation	[2]
	$9^{2x-3} = 27^{x+2}.$	
		Total: 5

$$x^{2} - 5x + 6 \equiv A(x+B)^{2} + C,$$

find the values of A, B and C.

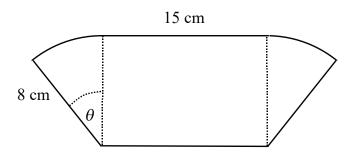
(b) Hence, or otherwise, write down the coordinates of the turning point of the curve with equation [2]

$$y = x^2 - 5x + 6.$$

Total: 5

Last updated: July 14, 2025

The curve $y = 2\sin(3x + k)$, with x measured in degrees, passes through the point ($10, \sqrt{3}$).
(a) Given that $0^{\circ} < k < 90^{\circ}$, show that $k = 30$.	[
(b) Solve the equation $y = \sqrt{2}$ for values of x in the interval $0^{\circ} \le x \le 180^{\circ}$	[
	Total:


4.	The line l passes through the points $A(5,1)$ and $B(11,19)$.	
	(a) Find the equation of the line l in the form $ax + by + c = 0$.	[3]
	The line m passes through the midpoint of AB and has a gradient of $\frac{2}{3}$.	
	(b) Find an equation of the line m .	[3]
	(c) Find the area of the triangle enclosed by the lines l, m and the y -axis.	[3]
		Total: 9

[2]

[4]

5. Figure shows a component cut from a metal sheet.

The shape consists of a rectangle of width 15 cm and two circular sectors of radius 8 cm and angle θ .

- (a) Given that the perimeter of the shape is 57.4 cm, show that $\theta = 0.7125$ radians.
- (b) Calculate the area of the shape correct to 2 decimal places.



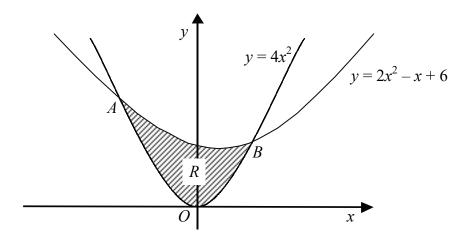
Figure shows how the component is made by cutting four pieces from a rectangular piece of metal sheet.

(c))	Calculate the perce	ntage of the recta	ngular sheet that	is cut off.	

[5]

6.

$$f(x) \equiv 4x - 3 + \frac{9}{x}.$$


- [3] (a) Prove that the equation f(x) = 0 has no real roots.
- (b) Solve the equation f'(x) = 0. [3]
- (c) Hence, find the coordinates of the stationary points of the curve y = f(x) and determine their nature.

d) State the set of values of x for which $f(x)$ is an increasing function.	[1]
	Total: 12

Last updated: July 14, 2025

7. Figure shows the curves $y = 4x^2$ and $y = 2x^2 - x + 6$ which intersect at the points A and B.

(a) Find the coordinates of the points A and B.

[5]

[7]

(b) Find, using integration, the area of the shaded region, R, enclosed by the two curves.

Total: 12

8.	(a) Find the sum of the odd numbers between 50 and 500.	[5]
	(b) The 3rd, 4th and 5th terms of a geometric series are given by $(x+4)$, $(4x-5)$ and $(2x+1)$ respectively.) [10]
	i. Show that one possible value of x is $\frac{1}{2}$, and find the other possible value.	
	ii. Find the common ratio and first term of the series for which $x = \frac{1}{2}$.	
	iii. Find the sum to infinity of this series.	
		m . 1 15
		Total: 15

Last updated: July 14, 2025

