Solomon Practice Paper

Pure Mathematics 1J

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	8	
4	8	
5	9	
6	9	
7	11	
8	16	
Total:	75	

How I can achieve better:

•

•

•

1. Figure shows a sector OAB of a circle, centre O and radius 12 cm.

Given that the perimeter of the sector OAB is 32 cm, find

(a) the size of $\angle AOB$ in radians as an exact fraction,

[3]

[4]

(b) the area of the shaded segment in $\rm cm^2$, giving your answer correct to 3 significant figures.

Total	:	7

Last updated: July 14, 2025

2.	(a)	Find	$\int (3x -$	$1)^2 \mathrm{d}x$
		- 4	,	

[4]

Given that $\frac{dy}{dx} = (3x - 1)^2$ and that when x = -1, y = 2,

(b) find y in terms of x.

[3]

Total: 7

3	(a)	Prove from	first	principles	that t	he sum	of the	first n	natural	numbers	
Ο.	(a)	I TOVE HOIII	11150	principles	unau u	ne sum	or the	11130 16	maturar	numbers,	

$$1+2+3+4+\ldots+n$$
,

is given by

$$\frac{1}{2}n(n+1).$$

((b)	Hence ev	aluate	the sum	of the	integers	between	-30	and 72	2 incl	usive.

Total: 8

[4]

[4]

A is the point $(8,0)$ and B is the point $(12,6)$.	
(a) Find an equation of the line passing through the points A and B .	[5
M and N are the midpoints of OA and OB respectively, where O is the origin.	
(b) Calculate the area of the trapezium $ABNM$.	[]
	Total:

Last updated: July 14, 2025

[5]

Total: 9

- 5. (a) Given that $y = 2^x$, show that
 - i. $4^x = y^2$
 - ii. $2^{x+2} = 4y$
 - (b) By using your answers to part (a), or otherwise, solve the equation

erwise, solve the equation	[4]

$$4^x - 2^{x+2} - 32 = 0.$$

6. (a) Show that the solutions of the equation

[4]

$$5\tan(\theta) - 6\cos(\theta) = 0,$$

will be given by the values of θ for which

$$6\sin^2(\theta) + 5\sin(\theta) - 6 = 0,$$

(b) Hence solve the equation

[5]

$$5\tan(\theta) - 6\cos(\theta) = 0$$

for θ in the interval $0 \le \theta \le 2\pi$, giving your answers correct to 2 decimal places.

Last updated: July 14, 2025

Total: 9

100	Jc
(~	

[5]

[6]

7. Figure shows a design consisting of four identical circles of radius r,

which are shaded, arranged such that their centres are at the four corners of a square of side 2r. A larger circle of radius R circumscribes the four smaller circles.

- (a) Show that $R = (1 + \sqrt{2})r$.
- (b) Hence show that the ratio of the total area of the four shaded circles to the area of the larger circle is equal to $(12 8\sqrt{2})$: 1.

		Total: 1

Last updated: July 14, 2025

8. Figure shows part of the curve

$$y = x^2 + \frac{8}{x}$$

which crosses the x-axis at the point A.

(a) Find the coordinates of the point A.

[3]

The line l is the normal to the curve at the point A.

(b) Find an equation of the line l.

[6]

(c) Show that the line l will intersect the curve where

[3]

$$6x^3 - x^2 - 2x + 48 = 0.$$

(d) Hence prove that l does not cross the curve other than at A.

Total: 16

[4]

