Solomon Practice Paper

Pure Mathematics 1H

Time allowed: 90 minutes

Centre: www.CasperYC.club

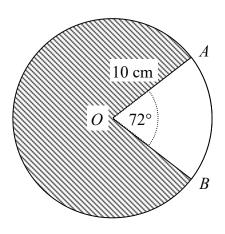
Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	8	
4	9	
5	9	
6	10	
7	12	
8	15	
Total:	75	

How I can achieve better:

•


•

•

1. Figure shows a circle, centre O, of radius 10 cm.

Points A and B are on the circumference of the circle and the acute angle AOB is 72° .

Giving your answers in terms of π , calculate

(a)) the	perimeter	of the	unshaded	minor	sector
-----	-------	-----------	--------	----------	-------	--------

ิว	ľ
3	

[3]

(b)	the	area	of	the	shaded	major	sector
-----	-----	------	----	-----	--------	-------	--------

- '	lotal	•	•
	LOtal	١.	١,

[6]

2.	Given	that			
					/

$$x(x^2 - A)\left(x - \frac{2}{x}\right) \equiv \left(x^2 + B\right)^2$$

Find the value of the constants A and B .							
	Find the value of the constants A and B .						

3.	The line $x - 2y + 8 = 0$ crosses the x-axis at the point P and the y-axis at the point Q.	
	(a) Find the coordinates of the points P and Q .	[3]
	(b) State the coordinates of the midpoint of PQ .	[1]
	Given that P and Q are diagonally opposite corners of a square,	
	(c) find an equation of the line that passes through the other two corners of the square.	[4]
		Total: 8

Last updated: July 14, 2025

Total: 9

4.	(a) Solve the equation	9	[3]
		4)	

$$3x - \frac{2}{x} = 5.$$

(b) Hence find the values of θ in the interval $-180^{\circ} \le \theta \le 180^{\circ}$ for which [6]

$$3\tan(\theta) - \frac{2}{\tan(\theta)} = 5.$$

Give your answers correct to 1 decimal place.

Last updated: July 14, 2025

5.

$$f(x) \equiv 2x^2 + 4px + q.$$

Given that the curve y = f(x) does not intersect the x-axis,

(a) prove that $2p^2 - q < 0$.

[3]

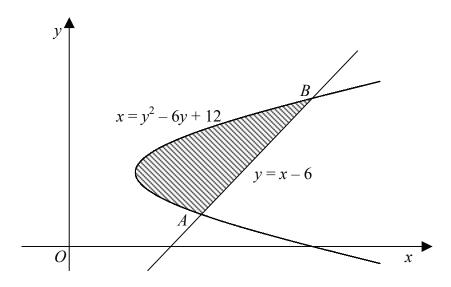
Given also that the curve y = f(x) passes through the point (2, 18),

(b) find an expression for q in terms of p.

[2]

[4]

(c) Using your answers to parts (a) and (b), find the set of possible values of p.


Total: 9

200

6.	The sum, S_n , of the first n terms of a sequence is given by $S_n = 5n^2 + 2n$.	
	(a) Evaluate S_3 and S_4 .	[3]
	(b) Write down the value of the fourth term of the sequence.	[1]
	(c) Show that the sum of the first $(n-1)$ terms is given by $S_{n-1} = 5n^2 - 8n + 3$.	[3]
	(d) Hence, or otherwise find an expression for the n th term of the sequence in terms of n .	[3]
		Total: 10

7. Figure shows the curve $x = y^2 - 6y + 12$ and the line y = x - 6.

The line and the curve intersect at the points A and B.

(a) Find the coordinates of the points A and B.

[7]

[5]

(b) Hence show that the area of the shaded region enclosed by the curve and the line is $\frac{125}{6}$.

Total: 12

8.

$$f(x) \equiv x^2 - 4\sqrt{x}, \quad x > 0.$$

(a) Solve the equation f(x) = 0, giving your solutions to an appropriate degree of accuracy.

[4]

The curve y = f(x) has a stationary point, P.

(b) Find f'(x) and determine the coordinates of the point P.

[5]

(c) Find f''(x) and hence show that P is a minimum point of the curve.

[3]

[3]

(d) Sketch the curve y = f(x), labelling P and the coordinates of any points where the curve crosses the coordinate axes.

Total: 15

700

Last updated: July 14, 2025