## Solomon Practice Paper

Pure Mathematics 1G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 5      |       |
| 2        | 6      |       |
| 3        | 7      |       |
| 4        | 9      |       |
| 5        | 9      |       |
| 6        | 11     |       |
| 7        | 14     |       |
| 8        | 14     |       |
| Total:   | 75     |       |

## How I can achieve better:

•

•

•





[5]

1. Figure shows a small rectangular picture frame.

$$x+3$$
 $x-5$ 

The frame is to have a width of (x+3) centimetres and a height of (x-5) centimetres.

Given that the area enclosed by the edge of the frame is to be at most  $105~\rm cm^2$ , find the set of possible values of x.



2. (a) Solve the equation

$$y - \frac{2}{y} = 5,$$

giving your answers correct to 2 decimal places.

(b) Given that p and q are constants, prove that the equation

| LO. |
|-----|
| 13  |
| 10  |

[3]

$$x^2 - 2px + 3q - 1 = 0$$

has no real solutions only if  $q > \frac{p^2 + 1}{3}$ .



| 3. | A savings scheme requires a minimum investment of £400 on the 1st of January each year. The scheme pays compound interest at $6\%$ per annum. |                 |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
|    | For an investor paying this minimum amount in each year,                                                                                      |                 |  |  |
|    | (a) show that after the payment of interest at the end of the second year the amount in the scheme is $\pounds 873.44$ .                      | [3]             |  |  |
|    | (b) find the amount in the scheme after the payment of interest at the end of 12 years.                                                       | [4]<br>Total: 7 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |
|    |                                                                                                                                               |                 |  |  |

4. (a) Find the exact values of  $\theta$  in radians, in the interval  $0 \le \theta \le 2\pi$  for which:



$$\cos\left(\theta - \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}.$$

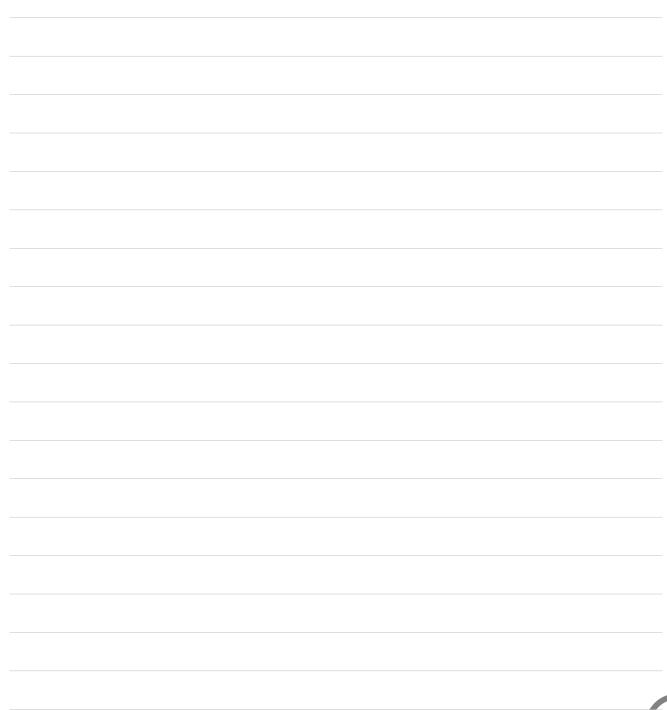
(b) Sketch the curve  $y = 1 - \sin(2x)$  for x in the interval  $0 \le x \le 360^{\circ}$ . [4]

Your graph should show clearly where the curve intersects each of the coordinate axes.

Last updated: July 14, 2025

Total: 9




5.

$$f(x) \equiv x^3 + 2x^2 + ax + 2.$$

- (a) Given that (x-2) is a factor of f(x), show that a=-9. [3]
- (b) Hence write f(x) as the product of a linear factor and a quadratic factor. [3]
- (c) Solve the equation f(x) = 0, giving your answers in surd form when appropriate.

| '- | Iotal: | Ĉ |
|----|--------|---|
| -  | rotar. | ć |

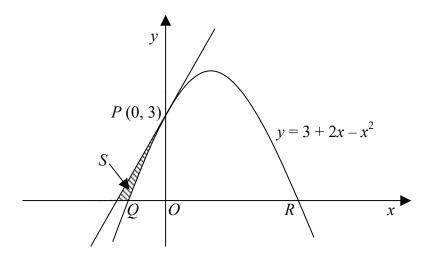
[3]





[5]

[4]


| 6. | The straight line $l$ passes through the points $A(-1,k)$ and $B(8,2)$ and has a gradient of $-\frac{1}{2}$ . |     |
|----|---------------------------------------------------------------------------------------------------------------|-----|
|    | (a) Show that $k = \frac{13}{2}$ .                                                                            | [2] |

(b) Find the equation of the line m that is perpendicular to l and passes through the mid-point of AB. Give the equation in the form ax + by + c = 0 where a, b and c are integers to be

|     | found and $a > 0$ .                                                                   |           |
|-----|---------------------------------------------------------------------------------------|-----------|
| (c) | Find the exact area of the triangle enclosed by the line $m$ and the coordinate axes. | [4]       |
|     |                                                                                       | Total: 11 |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |
|     |                                                                                       |           |



7. Figure shows the line  $y = 3 + 2x - x^2$  and its tangent at the point P(0,3).



The curve cuts the x-axis at Q and R as shown.

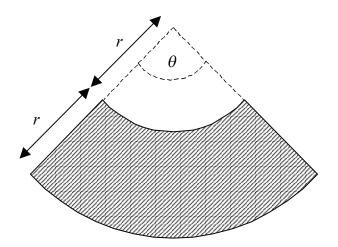
(a) Find the coordinates of the points Q and R.

[3]

(b) Find an equation of the tangent to the curve at P.

[4]

[7]


The shaded region S is bounded by the curve, the tangent and the x-axis.

(c) Find the exact area of the region S.

Total: 14



8. Figure shows the shape of a company logo.



The shape is made by removing a circular sector of radius r cm, angle  $\theta$  radians from a larger circular sector of radius 2r cm, angle  $\theta$  radians.

- (a) Show that the area,  $A \text{ cm}^2$ , of the shape is given by  $A = \frac{3}{2}r^2\theta$ .
- (b) Given that A = 90, show that the perimeter, P cm, of the shape is given by

$$P = 2r + 180r^{-1}.$$

Given that r can vary,

- (c) find the value of r for which P is a minimum and the corresponding value of P, giving your answers in the form  $a\sqrt{10}$ ,
- (d) justify that your value of P is a minimum. [2]



[2]

[4]

[6]

Total: 14

