Solomon Practice Paper

Pure Mathematics 1F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	6	
4	9	
5	11	
6	12	
7	12	
8	14	
Total:	75	

How I can achieve better:

•

•

•

[5]

1	Solve	for	r	in	the	interval	0	<	r	<	360°	
т.	DOLVE	101	\boldsymbol{x}	111	0116	morvar	U	\rightarrow	\boldsymbol{x}	\sim	500	

$$\sqrt{3} - 2\cos(x + 45) = 0.$$

2.

$$f(x) \equiv 3 + 21x + 9x^2 - x^3.$$

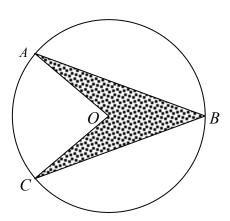
- (a) Find f'(x).
- (b) Find the set of values of x for which f(x) is decreasing.

[4] Total: 6

[2]

3.	(a) Expand $(1-5x)(x^3+x)$ in ascending powers of x .	[2]
	(b) Hence show that when $x = \sqrt{3}$, the value of $(1 - 5x)(x^3 + x)$ can be written in the	he form [4]
	$a\sqrt{3} + b$ where a and b are integers to be found.	
		Total: 6

4. Figure shows the badge design for a new model of car.



The design consists of an arrowhead in a circle. O is the centre of the circle and A, B and C lie on the circumference of the circle. The arrowhead is symmetrical about the line through OB.

Given that the radius of the circle is 7.2 cm and $\angle AOC = 84^{\circ}$,

[2]

(b) calculate the area of triangle AOB, correct to 2 decimal places,

[4]

(c) calculate the area of the arrowhead as a percentage of the area of the circle.

Total:	(
Total:	,

5. (a) By completing the square show that $ax^2 + bx + c$ can be written as

$$a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}.$$

(b) Hence prove that the solutions of the equation $ax^2 + bx + c = 0$ are given by

[4]

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

(c) Solve the equation

[4]

$$x(2x-3) = 1 + x$$

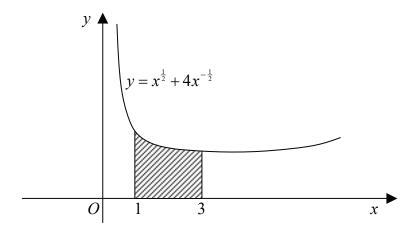
Last updated: July 14, 2025

Total: 11

giving your answers correct to 3 significant figures.

600
507

6. Figure shows the part of the curve with equation $y = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}$.



(a) Find the coordinates of the minimum point of the curve.

[6] 1 [6]

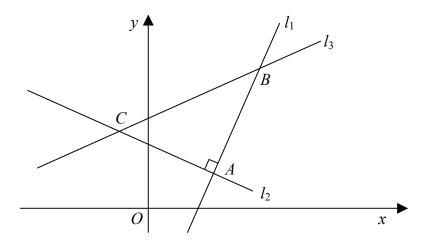
(b) Find the area of the shaded region enclosed by the curve, the x-axis and the ordinates x = 1 and x = 3, giving your answer as an exact value.

Total: 12

Last updated: July 14, 2025

7.	The	second and fifth terms of an arithmetic series are 213 and 171 respectively.	
	(a)	Find the first term and the common difference of the series.	[4]
	(b)	Find and simplify an expression for the n th term of the series in terms of n .	[2]
	(c)	By forming an appropriate inequality, or otherwise, find how many terms of the series are positive.	[3]
	(d)	Hence find the maximum value of S_n , the sum of the first n terms of the series.	[3]
			Total: 12

8. Figure shows the lines l_1, l_2 and l_3 .



Line l_1 passes through the points A(5,2) and B(7,8).

(a) Find an equation of the line l_1 .

[3]

Line l_2 is perpendicular to line l_1 and also passes through the point A.

(b) Find an equation of the line l_2 .

[3]

Line l_3 has equation x - 2y + 9 = 0 and intersects line l_1 at B and line l_2 at the point C.

(c) Find the coordinates of the point C.

[4]

[4]

(d) Prove that triangle ABC is isosceles.

Total: 14

Last updated: July 14, 2025