Solomon Practice Paper

Pure Mathematics 1C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	8	
4	9	
5	10	
6	10	
7	13	
8	14	
Total:	75	

How I can achieve better:

•

•

•

[5]

1. Find the set of values of x for which
--

$$2x(x-9) < (3x+1)(x-5).$$

[3]

(a)	Given that	[3]
()	,	L J
	(a)	(a) Given that

 $x = 2^p \quad \text{and} \quad y = 2^{5p+1}$

express each of the following in the form 2^m , where m is a function of p:

- i. xy
- ii. $8x^2$

(b) I	Hence	find	the	value	of p	for	which
----	-----	-------	------	-----	-------	--------	-----	-------

2

$8x^{-}$	_	xy	=	U.	

3. (a) Prove that the sum, S_n , of the first n terms of a geometric series with first term a and common ratio r is given by

$$S_n = \frac{a(r^n - 1)}{r - 1}.$$

(b) Hence evaluate

12	
\sum	3^r .
r=1	

Total:	8
--------	---

[4]

4. Figure shows the curve $x = 12 + 4y - y^2$

which crosses the y-axis at the point A(0, -2) and at the point B.

(a) Find the coordinates of the point B.

[3]

[3]

(b) Find
$$\int 12 + 4y - y^2 \, dy$$
.

[3]

(c) Hence find the area of the shaded region, R, enclosed by the curve and the y-axis.

Total: 9

Last updated: July 14, 2025

5. (a) Find, giving your answers in terms of π , all values of θ in the interval $0 \le \theta \le 2\pi$ for which [4]

$$\tan\left(\theta - \frac{\pi}{4}\right) = \sqrt{3}.$$

(b) Find, giving your answers correct to 1 decimal place, all values of x in the interval $0 \le x \le 180^{\circ}$ for which

$$\sin^2(2x) = 0.64.$$

			Total: 10

6.	The line l	passes t	hrough t	the points	$A(5,\sqrt{2})$	and $B($	$(k, 4 + 3\sqrt{2})$	and has	gradient $2\sqrt{2}$	

(a) Find an equation of the line l.

[2]

(b) Show that $k = 6 + \sqrt{2}$.

[4]

Given also that B is the mid-point of AC,

(c) find the coordinates of the point C.

[4]

Total: 10

Total: 13

7.

$$f(x) \equiv x^3 + ax^2 + bx - 24.$$

Given that (x + 2) and (x - 3) are factors of f(x),

- (a) show that a = 3 and b = -10, [5]
- (b) factorise f(x) completely and solve the equation f(x) = 0, [4]
- (c) find f'(x) and solve the equation f'(x) = 0, giving your answers correct to 2 decimal places. [4]

Last updated: July 14, 2025

8. Figure shows the design for a ramp.

The shape of the ramp is a prism whose cross-section is a right-angled triangle of base 12x cm and height 5x cm. The length of the prism perpendicular to this cross-section is l cm.

The volume of the prism is to be 240000 cm^3 .

(a) Show that l can be expressed as

$$l = \frac{8000}{x^2}.$$

(b) Hence show that the surface area, $A \text{ cm}^2$, can be written as

$A = 60x^2 +$	240,000
A = 00x +	\overline{x}

Given that x can vary,

(c) use calculus to find the minimum value of A,

[2]

[5]

[2]

[5]

(d) justify that the value that you have found is a minimum.

Total: 14

Last updated: July 14, 2025