Solomon Practice Paper

Pure Mathematics 1A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	7	
4	8	
5	9	
6	13	
7	13	
8	13	
Total:	75	

How I can achieve better:

•

•

•

[6]

1. Find	the pairs	of values	(x,y) wh	ich satisfy	the simultaneous	equations:
---------	-----------	-----------	----------	-------------	------------------	------------

$$2x - y = 1$$
$$4x^2 + 4y + y^2 = 9$$

2. (a) Prove that the quadratic equation

$$x^2 + (m-1)x + m + 2 = 0$$

has real and distinct roots when

$$m^2 - 6m - 7 > 0.$$

(b) Hence, or otherwise, find the set of values of m for which

ues of m for which [3]

$$x^2 + (m-1)x + m + 2 = 0$$

has real and distinct roots.

Total: 6

[3]

) Find the value of p .	
) Hence, find the sum of the first 10 terms of the series.	
	Tota
	1000
	Soc

4. (a) Show that the equatio	1. (a) Sh	ow that	the	equatio
------------------------------	------	-------	---------	-----	---------

$$2\sin^2(x) - \cos(x) = 1$$

can be written as

$$2\cos^2(x) + \cos(x) - 1 = 0.$$

(b) Using your answer to part (a), find all the solutions of the equation

[2]

$$2\sin^2(x) - \cos(x) = 1$$

in the interval $0 \le x \le 2\pi$, giving your answers in terms of π .

Total: 8

5.

$$f(x) \equiv x^3 - 5x^2 + 7x - 2.$$

(a) Show that x = 2 is a solution of the equation f(x) = 0.

[2]

[7]

(b) Find the other solutions of the equation f(x) = 0, giving your answers correct to 2 decimal places.

Total:	9
--------	---

6. Figure shows part of the curve with equation $y = 4x^{\frac{1}{2}} - x$.

A is the maximum point of the curve and the curve crosses the x - axis at the point B.

(a) Find the coordinates of the point A.

[5]

(b) Find the x - coordinate of the point B.

[3]

[5]

(c) Show that the area of the shaded region enclosed by the curve and the x - axis is $\frac{128}{3}$.

Total: 13

		5

7.	A and B are points with coordinates $(5,2)$ and $(-1,4)$ respectively.	
	(a) Find the equation of the line l which passes through the points A and B in the form $px + qy + r = 0$.	[3]
	(b) Find the coordinates of the midpoint of AB .	[2]
	(c) Hence, or otherwise, find the equation of the perpendicular bisector of AB .	[3]
	C is the point with coordinates $(3,4)$.	
	Given that the points A, B and C lie on the circumference of a circle, centre D ,	
	(d) find the coordinates of the point D .	[5]
		Total: 13

8. Figure shows the design for a hazard warning-symbol.

It consists of three identical sectors of a circle of radius r centimetres. The sectors are equally spaced and each subtends an angle θ radians at the centre.

Given that the area of the symbol is to be 48 cm²,

- (a) find an expression for θ in terms of r.
- (b) Hence, show that the perimeter of the shape, P cm, is given by

$$P = 6r + \frac{96}{r}.$$

Given that r can vary,

- (c) find the value of r for which P is a minimum and the corresponding value of P.
- [2]

[3]

[3]

[5]

(0	1)	justify	that	your	value	of	P	İS	a	minimum	l.
----	----	---------	------	------	-------	----	---	----	---	---------	----

Total:	: 13

