Solomon Practice Paper

Pure Mathematics 6G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	3	
2	6	
3	7	
4	9	
5	10	
6	10	
7	13	
8	17	
Total:	75	

How I can achieve better:

•

•

•

[3]

1.	
	$\mathbf{A} = \begin{pmatrix} 3 & 1 & -4 \\ 1 & 2 & -1 \\ 2 & k & 0 \end{pmatrix}$
	Find the value of the constant k for which \mathbf{A} is a singular matrix.

[6]

2.	Solve the equation $z^3 = -4 + 4\sqrt{3}\mathbf{i},$
	giving your answers in the form $r(\cos(\theta) + \mathbf{i}\sin(\theta))$ where $r > 0$ and $0 \le \theta < 2\pi$.

[7]

3.	Prove by induction that $n(n^2 + 5)$ is divisible by 6 for all positive integers n .

4.	The point.	P represents	the complex	number z i	in an <i>A</i>	Argand	diagram.	Given that
----	------------	--------------	-------------	--------------	----------------	--------	----------	------------

$$|z - 1 + 2\mathbf{i}| = 3,$$

(a) sketch the locus of P in an Argand diagram.

[3]

T,U and V are transformations from the z-plane to the w-plane where

T: w=4z,

 $U : w = z + 5 - \mathbf{i},$

 $V : w = z e^{i\frac{\pi}{2}}.$

(b) Describe exactly the locus of the image of P under each of these transformations.										
	Total: 9									

[5]

[3]

[2]

10

5.	(a)	By finding the first four derivatives of $f(x) = \cos(x)$, find the Taylor series expansion of $f(x)$ in ascending powers of $\left(x - \frac{\pi}{6}\right)$ up to and including the term in $\left(x - \frac{\pi}{6}\right)^3$.	
	(b)	Use this expansion to find an estimate of $\cos\left(\frac{\pi}{4}\right)$, giving your answer to 4 decimal places.	
	(c)	Find the percentage error in your answer to part (b), giving your answer to 2 significant figures.	
		Total	al
	• • • •		

Total: 10

6. Given that y satisfies the differential equation

$$\frac{d^2y}{dx^2} = x^2 + xy - y^2$$
, $y = \frac{1}{2}$ and $\frac{dy}{dx} = -1$ at $x = 0$,

- (a) use the Taylor series method to obtain a series for y in ascending powers of x up to and including the term in x^3 .
- (b) Use your series to estimate the value of y at x = -0.1. [1]
- (c) Use the approximation $\left(\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}\right)_0 \approx \frac{y_1 2y_0 + y_{-1}}{h^2}$ [3]

with a step length of 0.1 and your answer to part (b) to estimate the value of y when x = 0.1.

••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••

[5]

[4]

7. Referred to a fixed origin, the straight lines l_1, l_2 and l_3 have equations

$$l_1$$
: $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k} + s(2\mathbf{i} - 4\mathbf{j} + \mathbf{k}),$

$$l_2$$
: $\mathbf{r} = 3\mathbf{i} + 4\mathbf{k} + t(4\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}),$

$$l_3$$
: $\mathbf{r} = \mathbf{i} - 2\mathbf{j} + u(2\mathbf{j} + \mathbf{k}).$

The acute angle between l_1 and l_2 is θ .

(a) Find the exact value of $\sin(\theta)$.	
--	--

The plane Π contains the lines l_1 and l_2 .

(c) Show that the line l_3 lies on the plane Π .

(b) Find an equation of Π , giving your answer in the form $ax + by + cz$	$z + d = 0. ag{4}$
---	---------------------

Total: 13

• •	• •	• •	٠.	•	•	 ٠.	٠.	•	• •	• •	• •	•	 ٠.	•	 	•	٠.	•	 •	 •	 ٠.	•	 ٠.	•	• •	 ٠.	•	• •	• •	٠.	• •	•	• •	• •	• •	٠.	•	• •	 • •	٠.		•	• •	• •	•
• •				•	•	 	٠.	•				•	 	•	 	•		•			 ٠.	•	 ٠.	•		 ٠.	•					•			٠.	٠.	•		 	٠.	٠.				•
• •				•		 	٠.	•			٠.	•	 		 	•					 		 ٠.	•		 	•					•				٠.	•		 	٠.	٠.				•
						 	٠.						 		 						 		 ٠.	•		 	•								٠.	٠.			 	٠.					
				•		 	٠.	•				•	 		 						 ٠.		 ٠.	•		 ٠.	•					•				٠.	•		 	٠.					
						 	٠.						 		 						 		 			 										٠.			 						
						 		•				•	 		 						 		 			 													 						
						 						•	 		 						 		 	•		 	•									٠.			 						
						 	٠.						 		 						 		 			 													 						
						 							 		 						 		 			 										٠.			 						
						 							 		 						 		 			 													 	٠.					

8. (a) A	and B are non-singular square matrices. Prove that $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.	[4]
The tra	cansformations $S \colon \mathbb{R}^2 \mapsto \mathbb{R}^2$ and $T \colon \mathbb{R}^2 \mapsto \mathbb{R}^2$ are defined by	
	$S \colon \mapsto \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y - x \\ 2x + y \end{pmatrix} \text{and} T \colon \mapsto \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3x \\ x + y \end{pmatrix}.$	

(b) Show that S represents a linear transformation.	[7]
(c) Using your result in (a), or otherwise, find the matrix that represents the transformation $(ST)^{-1}$.	[6]
T	otal: 17

