Solomon Practice Paper

Pure Mathematics 6D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	9	
3	10	
4	11	
5	11	
6	13	
7	14	
Total:	75	

How I can achieve better:

•

•

•

[7]

1.	Given that
	$y = \frac{1}{1 - x},$
	prove by induction that $\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = \frac{n!}{(1-x)^{n+1}}$
	for all integers $n, n \ge 1$.

2. The variable y satisfies the differential equation

$$\frac{dy}{dx} = x^2 + y + 2, \quad y = 0 \text{ at } x = 0.$$

- (a) Given that $y \approx 2h$ when x = h, use the approximation $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 y_{-1}}{2h}$ once to obtain [4]an estimate for y as a function of h when x = 2h.
- (b) Use the same approximation to show that an estimate for y when x = 3h is given by [3]

 $y \approx 2h(2h^3 + 8h^2 + 4h + 3).$

(c) Hence find an estimate for y when $x = 0.3$.	[2] Total: 9

3.	Given	that
Э.	Given	unat

$$z^6 - z^3\sqrt{3} + 1 = 0,$$

(a) find the possible values of z^3 , giving your answers in the form $x + \mathbf{i}y$ where $x, y \in \mathbb{R}$.	[3]
(b) Hence find all possible values of z in the form $re^{i\theta}$, where $r > 0$ and $-\pi \le \theta < \pi$.	[7]
	Γotal: 10

4.	(a) Write down the first three terms of the series of e^{x^2} , in ascending powers of x .	[2
	(b) Hence, or otherwise, find the series expansion, in ascending powers of x up to and including	[5
	the term in x^4 , of $\frac{e^{x^2}}{1+2x}$.	L
	(c) Hence find an estimate for the area of the region bounded by the x-axis, the lines $x=0$	[4
	and $x = 0.2$, and the curve	
	$y = \frac{e^{x^2}}{1 + 2x},$	
	giving your answer to 3 significant figures.	
		al: 1
	100.	aı, 1

5. The transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix **A** where

$$\mathbf{A} = \begin{pmatrix} 2 & a & 1 \\ 1 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}.$$

(a) Find A^{-1} , showing your working clearly and stating the condition for which A is non-[7] singular.

[4]

11

Relative to a fixed origin O, the transformation T maps the point P onto the point Q. When a = -1, Q has position vector $5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

(b) Find the position vector of P , showing your working clearly.		
	Total	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

Last updated: May 5, 2023

6.	The planes Π_1 and Π_2 are defined by the equations $2x - y + 3z = 5$ and $x + 4y + z = -2$ respectively.		
	(a) Find, to the nearest degree, the acute angle between Π_1 and Π_2 .	[4]	
	The point A has coordinates $(2, 1, -2)$.		
	(b) Find the perpendicular distance between A and Π_1 .	[4]	
	The plane Π_3 is perpendicular to Π_1 and Π_2 and the point with coordinates $(0, 4, -1)$ lies on Π_3 .		
	(c) Find the equation of Π_3 in the form $ax + by + cz = d$.	[5]	
	То	tal: 13	

[7]

7. The transformation T from the complex z-plane to the complex w-plane is given by

$$w = \frac{1}{z^* - 2}, \quad z \neq 2.$$

(a) Show that the image in the w-plane of the line Re(z) = 5 in the z-plane, under T, is a circle. Find its centre and radius.

Find its centre and radius.

The region represented by Re(z) > 5 in the z-plane is transformed under T into the region

represented by R in the w-plane.

(b) Show the region R on an Argand diagram.

[3]

(c) Find the image in the w-plane under T of the half-line $\arg(z-2) = \frac{\pi}{4}$ in the the z-plane	ne. [4]
	Total: 14

• • • • • • • • • • • • • • • • • • • •

Last updated: May 5, 2023

