Solomon Practice Paper Pure Mathematics 6B Time allowed: 90 minutes Centre: www.CasperYC.club Name: Teacher: | Question | Points | Score | |----------|--------|-------| | 1 | 5 | | | 2 | 5 | | | 3 | 5 | | | 4 | 6 | | | 5 | 11 | | | 6 | 12 | | | 7 | 14 | | | 8 | 17 | | | Total: | 75 | | ## How I can achieve better: • • • [5] | $\frac{\ln(1+ax)}{1+bx}$ | $=3x+\frac{3}{2}x^2.$ | |--------------------------|-----------------------| |
 | | | | | | | |
 | | | \sim | α . | . 1 | |--------|------------|------| | ' | Given | that | | | | | | $ \sim$ I II - I, | |---------------------| |---------------------| | (a) sketch, in an Argand diagram, the locus of z , | [2] | |---|----------| | (b) find the maximum value of $arg(z)$ in degrees to one decimal place. | [3] | | | Total: 5 | 3. | (a) Show that | [2 | |----|---|----------| | | $ \cosh(\mathbf{i}x) = \cos(x) \text{where} x \in \mathbb{R}. $ | - | | | (b) Hence, or otherwise, solve the equation | [3 | | | $\cosh(\mathbf{i}x) = e^{\mathbf{i}x}$ | | | | $\cos \ln(ix) = \epsilon$ | | | | for $0 \le x < 2\pi$. | | | | 7 | Гotal: . | [6] | Given that | | | | | | |--------------------|-----------------------------|----------------|---------------|------------|--| | | $u_{n+2} = 5u_{n+1} - 6u_n$ | $n \ge 1$, | $u_1 = 2$ and | $u_2 = 4,$ | | | prove by induction | that $u_n = 2^n$ for all is | ntegers n, n | ≥ 1. | 5. $$\mathbf{M} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -4 \\ x & 3 & -1 \end{pmatrix}.$$ | $(x \ 3 \ -1)$ | | |--|----------| | (a) Given that $\lambda = -1$ is an eigenvalue of M , find the value of x . | [3] | | (b) Show that $\lambda = -1$ is the only real eigenvalue of M . | [6] | | (c) Find an eigenvector corresponding to the eigenvalue $\lambda = -1$. | [2] | | | otal: 11 | | 10 | Juan. 11 | [6] 6. A student is looking at different methods of solving the differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} = xy, \qquad y = 1 \quad \text{when} \quad x = 0.2.$$ The first method the student tries is to use the approximation (a) Find the value of the student's estimate for y at x = 0.4. $$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_0}{h}$$ twice with a step length of 0.1 to obtain an estimate for y at x = 0.4. The student then realises that the exact value of y at x = 0.4 can be found using integration. | (b) | Use integration to find the exact value of y at $x = 0.4$. | [4] | |-----|--|-----| | (c) | Find, correct to 1 decimal place, the percentage error in the estimated value in part (a). | [2] | | (c) I ma, correct to I decimal place, the percentage error in the estimated value in part (a). | [2] | |--|-----------| | | Total: 12 | | | • • • | | • • |
• • |
• • | • • |
• • |
• • • | • • | • • | • • | • • • | • • • | • • • |
• • | • • | • • | • • | • • | • • • |
• • | • • |
• • • | • • | • • • | • • | • • |
• • |
• • | • • |
• • |
 | |-----|---------|---------|-----|---------|-----------|-----|-----|-----|-------|-------|-------|---------|-----|-----|-----|-----|-------|---------|-----|-----------|-----|-------|-----|-------|---------|---------|-----|---------|-------------| | ٠. |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | |
 |
 | |
 |
 | | |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | |
 |
 | |
 |
• • • • | | |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | |
 |
 | |
 |
• • • • | | |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | |
 |
 | |
 |
• • • • | | |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | |
 |
 | |
 |
• • • • | | ٠. |
• • |
 | • • |
٠. |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | • • • |
 |
 | |
٠. |
 | | ٠. |
• • |
 | • • |
٠. |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | • • • |
 |
 | |
٠. |
 | | ٠. |
• • |
 | • • |
 |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | • • • |
٠. |
 | |
٠. |
 | | ٠. |
• • |
 | • • |
 |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | • • • |
٠. |
 | |
٠. |
 | | |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | |
 |
 | |
 |
• • • • | | ٠. |
• • |
 | • • |
 |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | • • • |
٠. |
 | |
٠. |
 | | ٠. |
• • |
 | • • |
 |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | • • • |
 |
 | |
٠. |
 | | ٠. |
• • |
 | • • |
٠. |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | • • • |
 |
 | |
٠. |
 | | |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | |
 |
 | |
 |
• • • • | | |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | |
 |
 | |
 |
• • • • | | ٠. |
• • |
 | • • |
٠. |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | • • • |
 |
 | |
٠. |
 | | |
 |
• • | • • |
 |
 | | | | | | |
 | | | | | |
٠. | |
 | • • | | • • | |
 |
• • | |
 |
 | | |
 |
 | |
 |
 | | | | | | |
 | | | | | |
 | |
 | | | | • • • |
 |
 | |
 |
 | | |
 |
 | • • |
 |
 | ٠. | | | | | |
 | | | | | |
 | ٠. |
 | | | | |
 |
 | |
 |
 | | | • | | |----|---|----------| | 7. | (a) Given that $z = \cos(\theta) + \mathbf{i}\sin(\theta)$, show that | [3] | | | $z^n + \frac{1}{z^n} = 2\cos(n\theta)$ and $z^n - \frac{1}{z^n} = 2\mathbf{i}\sin(n\theta)$, | | | | where n is a positive integer. | | | | (b) Given that | [8] | | | $\cos^4(\theta) + \sin^4(\theta) = A\cos(4\theta) + B,$ | | | | find the values of the constants A and B . | | | | (c) Hence find the exact value of | [3] | | | $\int_0^{\frac{\pi}{8}} \cos^4(\theta) + \sin^4(\theta) \mathrm{d}\theta.$ | | | | ${f T}$ | otal: 14 | 8. | The points A, B, C and D have coordinates $(3, -1, 2), (-2, 0, -1), (1, 2, 6)$ and $(-1, -5, 8)$ respectively, relative to the origin O . | | |----|---|------| | | (a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$. | [5] | | | (b) Find the volume of the tetrahedron $ABCD$. | [3] | | | The plane Π contains the points A, B and C . | | | | (c) Find a vector equation of Π in the form $\mathbf{r}.\mathbf{n} = p$. | [3] | | | The perpendicular from D to Π meets the plane at the point E . | | | | (d) Find the coordinates of E . | [6] | | | Total: | : 17 |