Solomon Practice Paper

Pure Mathematics 6B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	5	
4	6	
5	11	
6	12	
7	14	
8	17	
Total:	75	

How I can achieve better:

•

•

•

[5]

$\frac{\ln(1+ax)}{1+bx}$	$=3x+\frac{3}{2}x^2.$

\sim	α .	. 1
'	Given	that

$ \sim$ I II - I,

(a) sketch, in an Argand diagram, the locus of z ,	[2]
(b) find the maximum value of $arg(z)$ in degrees to one decimal place.	[3]
	Total: 5

3.	(a) Show that	[2
	$ \cosh(\mathbf{i}x) = \cos(x) \text{where} x \in \mathbb{R}. $	-
	(b) Hence, or otherwise, solve the equation	[3
	$\cosh(\mathbf{i}x) = e^{\mathbf{i}x}$	
	$\cos \ln(ix) = \epsilon$	
	for $0 \le x < 2\pi$.	
	7	Гotal: .

[6]

Given that					
	$u_{n+2} = 5u_{n+1} - 6u_n$	$n \ge 1$,	$u_1 = 2$ and	$u_2 = 4,$	
prove by induction	that $u_n = 2^n$ for all is	ntegers n, n	≥ 1.		

5.

$$\mathbf{M} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -4 \\ x & 3 & -1 \end{pmatrix}.$$

$(x \ 3 \ -1)$	
(a) Given that $\lambda = -1$ is an eigenvalue of M , find the value of x .	[3]
(b) Show that $\lambda = -1$ is the only real eigenvalue of M .	[6]
(c) Find an eigenvector corresponding to the eigenvalue $\lambda = -1$.	[2]
	otal: 11
10	Juan. 11

[6]

6. A student is looking at different methods of solving the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy, \qquad y = 1 \quad \text{when} \quad x = 0.2.$$

The first method the student tries is to use the approximation

(a) Find the value of the student's estimate for y at x = 0.4.

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_0}{h}$$

twice with a step length of 0.1 to obtain an estimate for y at x = 0.4.

The student then realises that the exact value of y at x = 0.4 can be found using integration.

(b)	Use integration to find the exact value of y at $x = 0.4$.	[4]
(c)	Find, correct to 1 decimal place, the percentage error in the estimated value in part (a).	[2]

(c) I ma, correct to I decimal place, the percentage error in the estimated value in part (a).	[2]
	Total: 12
	• • •

• •	 • •	 • •	• •	 • •	 • • •	• •	• •	• •	• • •	• • •	• • •	 • •	• •	• •	• •	• •	• • •	 • •	• •	 • • •	• •	• • •	• •	• •	 • •	 • •	• •	 • •	
٠.	 	 		 	 							 						 		 					 	 		 	
	 	 		 	 							 						 		 					 	 		 	 • • • •
	 	 		 	 							 						 		 					 	 		 	 • • • •
	 	 		 	 							 						 		 					 	 		 	 • • • •
	 	 		 	 							 						 		 					 	 		 	 • • • •
٠.	 • •	 	• •	 ٠.	 	٠.						 						 	٠.	 				• • •	 	 		 ٠.	
٠.	 • •	 	• •	 ٠.	 	٠.						 						 	٠.	 				• • •	 	 		 ٠.	
٠.	 • •	 	• •	 	 	٠.						 						 	٠.	 				• • •	 ٠.	 		 ٠.	
٠.	 • •	 	• •	 	 	٠.						 						 	٠.	 				• • •	 ٠.	 		 ٠.	
	 	 		 	 							 						 		 					 	 		 	 • • • •
٠.	 • •	 	• •	 	 	٠.						 						 	٠.	 				• • •	 ٠.	 		 ٠.	
٠.	 • •	 	• •	 	 	٠.						 						 	٠.	 				• • •	 	 		 ٠.	
٠.	 • •	 	• •	 ٠.	 	٠.						 						 	٠.	 				• • •	 	 		 ٠.	
	 	 		 	 							 						 		 					 	 		 	 • • • •
	 	 		 	 							 						 		 					 	 		 	 • • • •
٠.	 • •	 	• •	 ٠.	 	٠.						 						 	٠.	 				• • •	 	 		 ٠.	
	 	 • •	• •	 	 							 						 ٠.		 	• •		• •		 	 • •		 	
	 	 		 	 							 						 		 				• • •	 	 		 	
	 	 	• •	 	 	٠.						 						 	٠.	 					 	 		 	

	•	
7.	(a) Given that $z = \cos(\theta) + \mathbf{i}\sin(\theta)$, show that	[3]
	$z^n + \frac{1}{z^n} = 2\cos(n\theta)$ and $z^n - \frac{1}{z^n} = 2\mathbf{i}\sin(n\theta)$,	
	where n is a positive integer.	
	(b) Given that	[8]
	$\cos^4(\theta) + \sin^4(\theta) = A\cos(4\theta) + B,$	
	find the values of the constants A and B .	
	(c) Hence find the exact value of	[3]
	$\int_0^{\frac{\pi}{8}} \cos^4(\theta) + \sin^4(\theta) \mathrm{d}\theta.$	
	${f T}$	otal: 14

8.	The points A, B, C and D have coordinates $(3, -1, 2), (-2, 0, -1), (1, 2, 6)$ and $(-1, -5, 8)$ respectively, relative to the origin O .	
	(a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.	[5]
	(b) Find the volume of the tetrahedron $ABCD$.	[3]
	The plane Π contains the points A, B and C .	
	(c) Find a vector equation of Π in the form $\mathbf{r}.\mathbf{n} = p$.	[3]
	The perpendicular from D to Π meets the plane at the point E .	
	(d) Find the coordinates of E .	[6]
	Total:	: 17