Solomon Practice Paper

Pure Mathematics 6A

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	6	
3	7	
4	9	
5	11	
6	11	
7	11	
8	14	
Total:	75	

How I can achieve better:

•

•

•

1.	With respect to	a fixed	origin	O, the	ne lines l	$_1$ and l_2	are given	by the	e equations
----	-----------------	---------	--------	--------	--------------	----------------	-----------	--------	-------------

$$l_1$$
: $[\mathbf{r} - (-3\mathbf{i} + 2\mathbf{j} - \mathbf{k})] \times (\mathbf{i} + \mathbf{k}) = 0,$
 l_2 : $[\mathbf{r} - (\mathbf{i} + \mathbf{j} + 4\mathbf{k})] \times (2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 0.$

(a) Find $(\mathbf{i} + \mathbf{k}) \times (2\mathbf{i} - \mathbf{j} - 2\mathbf{k})$.	[3]

[3]	b) Find the shortest distance between l_1 and l_2 .	(b)
Total: 6		

••••••••••••••••••••••••••••••

[6]

2.	Prove by induction that, for all $n \in \mathbb{Z}^+$,
	$\sum_{r=1}^{n} (r^2 + 1) r! = n(n+1)!$

3.	(a) Solve the equation	[5]
	$z_3 + 27 = 0,$	
	giving your answers in the form $re^{i\theta}$ where $r > 0, -\pi < \theta \le \pi$.	
	(b) Show the points representing your solutions on an Argand diagram.	[2]
	(>) Show the Points Johnsons and Strain and Strain.	
		Total: 7

Last updated: May 5, 2023

[4]

Total: 9

4.

$$A = \begin{pmatrix} 2 & a \\ 2 & b \end{pmatrix}.$$

The matrix A has eigenvalues $\lambda_1 = -2$ and $\lambda_2 = 3$.

Find the value of a and the value of b .
--

Using your values of a and b,

/1_) for each eigenvalue, find a corresponding eigenvector,	2
(1)	Tor each eigenvalue find a corresponding eigenvector	.31
(~) for each eigenvalue, mid a corresponding eigenvector,	91

(c) find a matrix P such that			
· <i>'</i>	<i>T</i>	$\begin{pmatrix} -2 & 0 \end{pmatrix}$	-

$\mathbf{P}^T \mathbf{A} \mathbf{P} =$	$\int -2$	0
г аг –	$\int 0$	3

 •
•
 •
 •
 •
•
 •
•

[11]

	$(1+x^2)\frac{d^2y}{dx^2} + 4x + \frac{dy}{dx} + 2y = 0$
and	$y = 1, \frac{\mathrm{d}y}{\mathrm{d}x} = 1$
at $x = -1$.	
Find a series solution of including the term in (x)	f the differential equation in ascending powers of $(x + 1)$ up to a $(x + 1)^4$.

[11]

6. The variable y satisfies the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = x \frac{\mathrm{d}y}{\mathrm{d}x} + y^2$$

with y = 1.2 at x = 0.1 and y = 0.9 at x = 0.2.

Use the approximations

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_{-1}}{2h}$$
 and $\left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2}$

with a step length of 0.1 to estimate the values of y at $x=0.3$ and $x=0.4$ giving your answers to 3 significant figures.

[3]

7.

$$\mathbf{M} = \begin{pmatrix} 2 & 1 & 1 \\ k & 4 & 3 \\ -1 & k & 2 \end{pmatrix}.$$

- (a) Find the determinant of M in terms of k. [2]
- (b) Prove that \mathbf{M} is non-singular for all real values of k. [2]
- (c) Given that k = 3, find \mathbf{M}^{-1} , showing each step of your working. [4]

When k = 3 the image of the vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ when transformed by \mathbf{M} is the vector $\begin{pmatrix} 0 \\ 3 \\ 5 \end{pmatrix}$.

(d) Find the values of a, b and c .		[3]
	Total:	11
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

Last updated: May 5, 2023

[6]

[3]

8. A transformation T from the z-plane to the w-plane is defined by

$$w = \frac{z+1}{\mathbf{i}z - 1}, \quad z \neq -\mathbf{i},$$

where $z = x + \mathbf{i}y$, $w = u + \mathbf{i}v$ and x, y, u and v are real.

(c) On a single Argand diagram sketch L and C.

T transforms the circle |z|=1 in the z-plane onto a straight line L in the w-plane.

- (a) Find an equation of L giving your answer in terms of u and v. [5]
- (b) Show that T transforms the line Im(z) = 0 in the z-plane onto a circle C in the w-plane, giving the centre and radius of this circle.

Total: 1	4

