Solomon Practice Paper

Pure Mathematics 5G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	8	
4	9	
5	12	
6	14	
7	18	
Total:	75	

How I can achieve better:

•

•

•

1.	Given that $y = e^{\arctan(x)}$,	
	(a) find $\frac{\mathrm{d}y}{\mathrm{d}x}$ and $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.	[4]
	The curve $y = e^{\arctan(x)}$ has a point of inflexion.	
	(b) Find the coordinates of this point of inflexion.	[3]
		Total: 7

2.	(a) Prove that	[3]
	$\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{arcosh}(x) = \frac{1}{\sqrt{x^2 - 1}}.$	
	(b) Find	[4]
	$\int \operatorname{arcosh}(x) \mathrm{d}x.$	
		Гotal: 7

Last updated: May 5, 2023

[8]

3.	Find $\int_0^{\frac{\pi}{4}} \frac{1}{1 + \sin(2x)} \mathrm{d}x.$

1.	(a) Find $\int \frac{1}{\sqrt{4x^2 - 4x + 10}} \mathrm{d}x.$	[6]
	(b) Hence evaluate $\int_{\frac{1}{2}}^{2} \frac{1}{\sqrt{4x^2 - 4x + 10}} dx.$	[3]
	giving your answer in terms of natural logarithms.	
		Total: 9
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
	•••••••••••••••••••••••••••••••	•
		•
		•

5.	giving t	e same axes sketch the curves with equations $y = 2 - \tanh(x)$ and $y = 3 \operatorname{sech}(x)$, the coordinates of the points of intersection of the curves with the coordinate axes e equations of the asymptotes.	[5]
	(b) Solve th	he equation	[7]
	()	$2 - \tanh(x) = 3\operatorname{sech}(x),$	
	giving v	your answers to 2 decimal places.	
	giving y		
		Total	1: 12

Last updated: May 5, 2023

[7]

[7]

14

6.

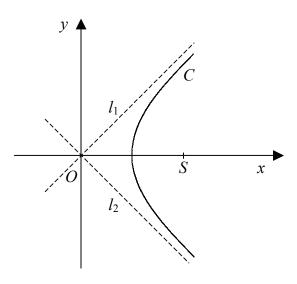
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) \, \mathrm{d}x, \quad n \ge 0.$$

(a) Show that

$$I_n = \frac{n-1}{n}I_{n-2}, \quad n \ge 2.$$

The curve C is defined by $y = \sin^2(x), 0 \le x \le \pi$.

The area bounded by C and the positive x-axis is rotated through 2π radians about the x-axis.


(b) Find the volume of the solid generated giving your answer in terms of π .	
To	tal:
••••••••••••••••••••••••••••••	

Last updated: May 5, 2023

7. Figure shows the curve C which is part of the hyperbola with parametric equations

$$x = a \cosh(t)$$
, and $y = 2a \sinh(t)$,

where a is a positive constant and $x \ge a$.

The lines l_1 and l_2 are asymptotes to C.

(a) Show that the radius of curvature of C at its vertex is 4a.

[6]

[4]

- (b) Show that an equation of the tangent to C at the point $P(\cosh(p), 2a\sinh(p))$ is
 - $2x\cosh(p) y\sinh(p) = 2a.$

The tangent to the curve C at P meets the asymptote l_1 at Q.

Given that QS is parallel to the y-axis, where S is the focus,

(c) show that $p = \frac{1}{2} \ln(5)$.	[8]
	Total: 18

