Solomon Practice Paper

Pure Mathematics 5F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	7	
3	7	
4	9	
5	10	
6	11	
7	12	
8	15	
Total:	75	

How I can achieve better:

•

•

•

[4]

1.	
	$f(x) = \operatorname{arctanh}(\sin(x)).$
	Show that $f'(x) = \sec(x)$.

[7]

2.	Find the length of the arc of the curve with equation $y = \ln(\sec(x))$ between $x = 0$ and $x = \frac{\pi}{5}$ giving your answer in terms of natural logarithms.	Ţ }
		•
		·
		•
		•
		•
		•
		•
		•
		•
	······································	inte

Last updated: May 5, 2023

[7]

3. A curve has parametric equations	
$x = t^2$, and $y = t^3$.	
Show that the radius of curvature of the curve at the point $(1,1)$ is $\frac{13\sqrt{13}}{6}$.	
· · · · · · · · · · · · · · · · · · ·	
	• • • •
	• • • •
	• • • •
	• • •

Last updated: May 5, 2023

	4	
4	4	

$$I_n = \int_1^e \left(\ln(x)\right)^n \, \mathrm{d}x.$$

(a) Prove that, for $n \in \mathbb{Z}^+$,		[4]
	$I_n = e - nI_{n-1}$.	

$-n$ $\cdots -n-1$	
(b) Find I_3 , leaving your answer in terms of e.	[5]
	Total: 9

[10]

5. Figure shows the curve C which has equation $y = \operatorname{arcosh}(x)$.

The shaded region bounded by C, the x-axis and the line $x = \cosh(2)$ is rotated through 2π about the y-axis.

The volume of revolution of the solid generated is $a\pi$. Find the value of a to one decimal place.

Last updated: May 5, 2023

6.

$$f(x) \equiv \frac{3x - 7}{(x+1)(x^2+4)}, \qquad x \neq -1.$$

(a) Express $f(x)$ in partial fractions.	[4]
(b) Show that	[7]
$\int_0^2 f(x) dx = \frac{\pi}{8} + \ln\left(\frac{2}{9}\right).$	
	Total: 11
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

7.	The ellipse C has equation $\frac{x^2}{a} + \frac{y^2}{b} = 1$, where a and b are positive constants and $a > b$.	
	(a) Find an equation of the normal to C at the point $P(a\cos(\theta), b\sin(\theta))$.	[5]
	The normal to C at P meets the x -axis at Q .	
	R is the foot of the perpendicular from P to the x -axis.	
	(b) Show that $\frac{OQ}{OR} = e^2$, where e is the eccentricity of C .	[7]
	To	tal: 12
		40 - 755

8.	(a) Using the definitions of hyperbolic functions in terms of exponential functions prove that	[6]
	$\operatorname{arcsinh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$	
	(b) On the same axes sketch the graphs of $y = \sinh(x)$ and $y = \operatorname{arcsinh}(x)$.	[3]
	(c) Solve the equation $x = \sinh \left[\ln(3x - 2)\right], \qquad x > \frac{2}{3}.$	[6]
	${f T}$	otal: 15

